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Advanced Perl Techniques

 Advanced level training for Perl 
programmers

 Turn intermediate programmers into 
advanced programmers

 “Modern” Perl
 Perl is not dying
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Advanced Perl Techniques

 One day isn't enough time
 We'll be moving fairly fast
 Lots of pointers to other information
 Feel free to ask questions
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What We Will Cover

 What's new in Perl 5.10
 Dates and times
 Testing

− including coverage analysis
 Database access

− DBIx::Class
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What We Will Cover

 Profiling & Benchmarking
 Object oriented programming with Moose
 Templates
 MVC Frameworks

− Catalyst 
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Schedule

 09:45 – Begin
 11:15 – Coffee break
 13:00 – Lunch
 14:00 – Begin 
 15:30 – Coffee break
 17:00 – End
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Resources

 Slides available on-line
− http://mag-sol.com/train/public/2009-02/adv

 Also see Slideshare
− http://www.slideshare.net/davorg/slideshows

 Mailing List
− http://lists.mag-sol.com/mailman/listinfo/adv2009

 Get Satisfaction
− http://getsatisfaction.com/magnum
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Perl 5.10
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Perl 5.10

 Released 18th Dec 2007
− Perl's 20th birthday

 Many new features
 Well worth upgrading
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New Features
 Defined-or operator
 Switch operator
 Smart matching
 say()
 Lexical $_
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New Features

 State variables
 Stacked file tests
 Regex improvements
 Many more
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Defined Or
 Boolean expressions “short-circuit”
 $val = $val || $default;
 $val ||= $default;
 What if 0 is a valid value?
 Need to check “definedness”
 $val = defined $val
         ? $val : $default;

 $val = $default unless defined $val;
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Defined Or

 The defined or operator makes this easier
 $val = $val // $default;
 A different slant on truth
 Checks definedness
 Short version too
 $val //= $default;
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Switch Statement

 Switch.pm was added with Perl 5.8
 Source filter
 Parser limitations

− Regular expressions
− eval

 5.10 introduces a build-in switch statement
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Given ... When

 Switch is spelled “given”
 Case is spelled “when”
 Powerful matching syntax
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Given Example
 given ($foo) {
    when (/^abc/) { $abc = 1; }
    when (/^def/) { $def = 1; }
    when (/^xyz/) { $xyz = 1; }
    default { $nothing = 1; }
}

 Four new keywords
− given
− when
− default
− continue
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given

 given(EXPR)
 Assigns the result of EXPR to $_ within the 

following block
 Similar to do { my $_ = EXPR; ... }
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when

 when (EXPR)
 Uses smart matching to compare $_ with 

EXPR
 Equivalent to when ($_ ~~ EXPR)
 ~~ is the new smart match operator
 Compares two values and “does the right 

thing” 
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default

 default defines a block that is executed if no 
when blocks match

 default block is optional
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continue

 continue keyword falls through to the next 
when block

 Normal behaviour is to break out of given 
block once the first when condition is 
matched

 given($foo) {
    when (/x/)
      {say '$foo contains an x'; continue }
    when (/y/)
      { say '$foo contains a y' }
    default
      { say '$foo contains no x or y' }
}
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Smart Matching

 ~~ is the new Smart Match operator
 Different kinds of matches
 Dependent on the types of the operands
 See “perldoc perlsyn” for the full details
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Smart Match Examples
 $foo ~~ $bar; # == or eq
 @foo ~~ $bar; # array contains value
 %foo ~~ $bar; # hash key exists
 $foo ~~ qr{$bar}; # regex match
 @foo ~~ @bar; # arrays are identical
 %foo ~~ %bar; # hash keys match
 Many more alternatives
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say()

 say() is a new alternative to print()
 Adds a new line at the end of each call
 say($foo); # print $foo, “\n”;
 Two characters shorter than print
 Less typing
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Lexical $_

 $_ is a package variable
 Always exists in main package
 Can lead to subtle bugs when not localised 

correctly
 Can now use my $_ to create a lexically 

scoped variable called $_
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State Variables

 Lexical variables disappear when their scope 
is destroyed

 sub variables {
  my $x;

  say ++$x;
}

variables() for 1 .. 3;
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State Variables

 State variables retain their value when their 
scope is destroyed

 sub variables {
  state $x;

  say ++$x;
}

variables() for 1 .. 3;
 Like static variables in C
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Stacked File Tests

 People often think you can do this
 -f -w -x $file
 Previously you couldn't
 Now you can
 Equivalent to
 -x $file && -w _ && -f _
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Regex Improvements

 Plenty of regular expression improvements
 Named capture buffers
 Possessive quantifiers
 Relative backreferences
 New escape sequences
 Many more
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Named Capture Buffers

 Variables $1, $2, etc change if the regex is 
altered

 Named captures retain their names
 (?<name> ... ) to define
 Use new %+ hash to access them
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Named Capture Example

 while (<DATA>) {
  if (/(?<header>[\w\s]+)
      :\s+(?<value>.+)/x) {
    print "$+{header} -> ";
    print "$+{value}\n";
  }
}
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Possessive Quantifiers

 ?+, *+, ++
 Grab as much as they can
 Never give it back
 Finer control over backtracking
 'aaaa' =~ /a++a/
 Never matches
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Relative Backreferences

 \g{N}
 More powerful version of \1, \2, etc
 \g{1} is the same as \1
 \g{-1} is the last capture buffer
 \g{-2} is the one before that
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New Escape Sequences

 \h – Horizontal white space
 \v – Vertical white space
 Also \H and \V
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Accessing New Features

 Some new features would break backwards 
compatibility

 They are therefore turned off by default
 Turn them on with the feature pragma
 use feature 'say';
 use feature 'switch';
 use feature 'state';
 use feature ':5.10';
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Implicit Loading

 Two ways to automatically turn on 5.10 
features

 Require a high enough version of Perl
 use 5.10.0; # Or higher
 -E command line option
 perl -e 'say “hello”'
 perl -E 'say “hello”'
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Dates and Times
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Dates & Times

 Dozens of date/time modules on CPAN
 Date::Manip is almost never what you want
 Date::Calc, Date::Parse, Class::Date, 

Date::Simple, etc
 Which one do you choose?
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Perl DateTime Project

 http://datetime.perl.org/

 "The DateTime family of modules present a 
unified way to handle dates and times in 
Perl"

 "unified" is good
 Dozens of modules that work together in a 

consistent fashion



UKUUG
26th February 2009

39

Using DateTime

 use DateTime;
my $dt = DateTime->now;
say $dt;
# 2009-02-26T11:06:07
say $dt->ymd;
# 2009-02-26
say $dt->hms;
# 11:08:16
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Using DateTime

 use DateTime;
my $dt = DateTime->new(year  => 2009,
                       month => 2,
                       day   => 26);
say $dt->ymd('/');
# 2009/02/26
say $dt->month;      # 2
say $dt->month_name; # February
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Arithmetic

 A DateTime object is a point in time
 For date arithmetic you need a duration
 Number of years, weeks, days, etc
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Arithmetic

 use DateTime;
my $dt = DateTime->new(year => 2009,
                       month => 2,
                       day => 26);
my $two_weeks =
DateTime::Duration->new(weeks => 2);
$dt += $two_weeks;
say $dt;
# 2009-03-12T00:00:00
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Formatting Output

 use DateTime;
my $dt = DateTime->new(year => 2009,
                       month => 2,
                       day => 26);
say $dt->strftime('%A, %d %B %Y');
# Tuesday, 26 February 2009

 Control input format with 
DateTime::Format::Strptime
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Parsing & Formatting
 Ready made parsers and formatters for 

popular date and time formats
 DateTime::Format::HTTP
 DateTime::Format::MySQL
 DateTime::Format::Excel
 DateTime::Format::Baby

− the big hand is on...
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Alternative Calendars

 Handling non-standard calendars
 DateTime::Calendar::Julian
 DateTime::Calendar::Hebrew
 DateTime::Calendar::Mayan
 DateTime::Fiction::JRRTolkien::Shire
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Calendar Examples
 use DateTime::Calendar::Mayan;

my $dt = DateTime::Calendar::Mayan->now;

say $dt->date; # 12.19.16.1.15
 use DateTime::Fiction::JRRTolkien::Shire

my $dt =  
  DateTime::Fiction::JRRTolkien::Shire->now;

say $dt->on_date;
# Mersday 24 Solmath 7473
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Testing
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Testing

 Never program without a safety net
 Does your code do what it is supposed to 

do?
 Will your code continue to do what it is 

supposed to do?
 Write unit tests
 Run those tests all the time
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When to Run Tests

 As often as possible
 Before you add a feature
 After you have added a feature
 Before checking in code
 Before releasing code
 Constantly, automatically
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Testing in Perl

 Perl makes it easy to write test suites
 A lot of work in this area over the last eight 

years
 Test::Simple and Test::More included in 

Perl distribution
 Many more testing modules on CPAN
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Simple Test Program

 use Test::More tests => 4;

BEGIN { use_ok('My::Object'); }

ok(my $obj = My::Object->new);
isa_ok($obj, 'My::Object');
$obj->set_foo('Foo');
is($obj->get_foo, 'Foo');
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Simple Test Output
 $ prove -v test.t
test....
1..4
ok 1 - use My::Object;
ok 2
ok 3 - The object isa My::Object
ok 4
ok
All tests successful.
Files=1, Tests=4,  0 wallclock secs ( 
0.02 usr  0.00 sys +  0.05 cusr  0.00 
csys =  0.07 CPU)
Result: PASS



UKUUG
26th February 2009

53

Adding Test Names

 use Test::More tests => 4;
BEGIN { use_ok('My::Object'); }

ok(my $obj = My::Object->new,
   'Got an object');
isa_ok($obj, 'My::Object');
$obj->set_foo('Foo');
is($obj->get_foo, 'Foo',
   'The foo is "Foo"');
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Output With Names
 $ prove -v test2.t
test2....
1..4
ok 1 - use My::Object;
ok 2 - got an object
ok 3 - The object isa My::Object
ok 4 - The foo is "Foo"
ok
All tests successful.
Files=1, Tests=4,  0 wallclock secs ( 
0.02 usr  0.00 sys +  0.05 cusr  0.00 
csys =  0.07 CPU)
Result: PASS
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Using prove
 prove is a command line tool for running 

tests
 Runs given tests using Test::Harness
 Comes with the Perl distribution
 Command line options

− -v verbose output
− -r recurse
− -s shuffle tests
− Many more
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Test Anything Protocol

 Perl tests have been spitting out “ok 1” and 
not “ok 2” for years

 Now this ad-hoc format has a definition 
and a name

 The Test Anything Protocol (TAP)
 See Test::Harness::TAP (documentation 

module) and TAP::Parser
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TAP Output

 More possibilities for test output
− TAP::Harness::Color
− Test::TAP::HTMLMatrix

 Make sense of your test results
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More Testing Modules

 Dozens of testing modules on CPAN
 Some of my favourites
 Test::File
 Test::Exception, Test::Warn
 Test::Differences
 Test::XML (includes Test::XML::XPath)
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Writing Test Modules

 These test modules all work together
 Built using Test::Builder
 Ensures that test modules all use the same 

framework
 Use it as the basis of your own Test::* 

modules
 Who tests the testers?
 Test your Test::Builder test modules with 

Test::Builder::Tester



UKUUG
26th February 2009

60

Mocking Objects

 Sometimes it's hard to test external interfaces
 Fake them
 Test::MockObject pretends to be other 

objects
 Gives you complete control over what they 

return
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Testing Reactors

 You're writing code that monitors a nuclear 
reactor

 It's important that your code reacts correctly 
when the reactor overheats

 You don't have a reactor in the test 
environment
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Testing Reactors

 Even if you did, you wouldn't want to make 
it overheat every time you run the tests

 Especially if you're not 100% sure of your 
code

 Or if you're running unattended smoke tests
 Fake it with a mock object
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My::Monitor Spec

 If the temperature of a reactor is over 100 
then try to cool it down

 If you have tried cooling a reactor down 5 
times and the temperature is still over 100 
then return an error



UKUUG
26th February 2009

64

My::Monitor Code
 package My::Monitor;

sub new {
  my $class = shift;
  my $self = { tries => 0 };

  return bless $self, $class;
}
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My::Monitor Code

 sub check {
  my $self = shift;
  my $reactor = shift;

  my $temp = $reactor->temperature;

  if ($temp > 100) {
    $reactor->cooldown;
    ++$self->{tries};
    if ($self->{tries} > 5) {
      return;
    }
    return 1;
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My::Monitor Code
   } else {
    $self->{tries} = 0;
    return 1;
  }
}

1;
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Mock Reactor

 Create a mock reactor object that acts 
exactly how we want it to

 Reactor object has two interesting methods
 temperature - returns the current temperature
 cooldown - cools reactor and returns success 

or failure
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monitor.t
 use Test::More tests => 10;

use Test::MockObject->new;

# Standard tests

BEGIN { use_ok('My::Monitor'); }

ok(my $mon = My::Monitor->new);
isa_ok($mon, 'My::Monitor');



UKUUG
26th February 2009

69

monitor.t
 # Create Mock Reactor Object

my $t = 10;
my $reactor = Test::MockObject;

$reactor->set_bound('temperature',
                    \$t);

$reactor->set_true('cooldown');
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monitor.t
 # Test reactor

ok($mon->check($reactor));

$t = 120;

ok($mon->check($reactor)) for 1 .. 5;

ok(!$mon->check($reactor));
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How Good Are Your Tests?
 How much of your code is exercised by your 

tests?
 Devel::Cover can help you to find out
 Deep internal magic
 Draws pretty charts

− HARNESS_PERL_SWITCHES= 
-MDevel::Cover make test

− cover
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Devel::Cover Output
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Devel::Cover Output



UKUUG
26th February 2009

74

Devel::Cover Output
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Alternative Test Paradigms

 Not everyone likes the Perl testing 
framework

 Other frameworks are available
 Test::Class

− xUnit style framework
 Test::FIT

− Framework for Interactive Testing
− http://fit.c2.com
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More Information
 Perl Testing: A Developer's Notebook (Ian 

Langworth & chromatic)
 perldoc Test::Tutorial
 perldoc Test::Simple
 perldoc Test::More
 perldoc Test::Builder
 etc...
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Benchmarking
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Benchmarking

 Ensure that your program is fast enough
 But how fast is fast enough?
 premature optimization is the root of all 

evil
− Donald Knuth
− paraphrasing Tony Hoare

 Don't optimise until you know what to 
optimise
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Benchmark.pm
 Standard Perl module for benchmarking
 Simple usage
 use Benchmark;
my %methods = (
    method1 => sub { ... },
    method2 => sub { ... },
);
timethese(10_000, \%methods);

 Times 10,000 iterations of each method
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Benchmark.pm Output

 Benchmark: timing 10000 iterations of 
method1, method2...
 method1:  6 wallclock secs \
 ( 2.12 usr +  3.47 sys =  5.59 CPU) \
   @ 1788.91/s (n=10000)
 method2:  3 wallclock secs \
 ( 0.85 usr +  1.70 sys =  2.55 CPU) \
   @ 3921.57/s (n=10000)
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Timed Benchmarks

 Passing timethese a positive number 
runs each piece of code a certain number of 
times

 Passing timethese a negative number 
runs each piece of code for a certain 
number of seconds
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Timed Benchmarks

 use Benchmark;
my %methods = (
    method1 => sub { ... },
    method2 => sub { ... },
);

# Run for 10,000(!) seconds
timethese(-10_000, \%methods); 
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Comparing Performance

 Use cmpthese to get a tabular output
 Optional export
 use Benchmark 'cmpthese';
my %methods = (
    method1 => sub { ... },
    method2 => sub { ... },
);
cmpthese(10_000, \%methods);
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cmpthese Output

              Rate method1 method2
method1 2831802/s      --    -61%
method2 7208959/s    155%      -- 

 method2 is 61% slower than method1
 Can also pass negative number to 
cmpthese
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Benchmarking is Hard

 Very easy to produce lots of numbers
 Harder to ensure that the numbers are 

meaningful
 Compare code fragments that do the same 

thing
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Bad Benchmarking

 use Benchmark qw{ timethese };
timethese( 1_000, {
  Ordinary    => sub {
   my @results = sort { -M $a <=> -M $b }  
                      glob "/bin/*";
},
  Schwartzian => sub {
        map $_->[0],
        sort { $a->[1] <=> $b->[1] }
        map [$_, -M], glob "/bin/*";
      },
});
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What to Benchmark

 Profile your code
 See which parts it is worth working on
 Look for code that

− Takes a long time to run, or
− Is called many times, or
− Both
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Devel::DProf

 Devel::DProf is the standard Perl profiling 
tool

 Included with Perl distribution
 Uses Perl debugger hooks
 perl -d:DProf your_program
 Produces a data file called tmon.out
 Command line program dprofpp to view 

results
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Sample Output
 $ perl -d:DProf ./invoice.pl 244

$ dprofpp 
Total Elapsed Time = 1.173152 Seconds
  User+System Time = 0.963152 Seconds
Exclusive Times
%Time ExclSec CumulS #Calls sec/call Csec/c  Name
 6.02   0.058  0.067    482   0.0001 0.0001  Params::Validate::_validate
 5.09   0.049  0.114      7   0.0070 0.0163  Class::DBI::Loader::mysql::BEGIN
 4.15   0.040  0.050     10   0.0040 0.0050  Template::Parser::BEGIN
 4.15   0.040  0.166      7   0.0057 0.0237  DateTime::Locale::BEGIN
 4.05   0.039  0.094     43   0.0009 0.0022  base::import
 3.74   0.036  0.094    449   0.0001 0.0002  DateTime::Locale::_register
 3.11   0.030  0.280      4   0.0074 0.0700  DateTime::Format::MySQL::BEGIN
 2.91   0.028  0.028    170   0.0002 0.0002  Lingua::EN::Inflect::_PL_noun
 2.70   0.026  0.040      1   0.0262 0.0401  Template::Parser::_parse
 2.49   0.024  0.024   1113   0.0000 0.0000  Class::Data::Inheritable::__ANON__
 2.08   0.020  0.020     12   0.0017 0.0017  DBD::mysql::db::_login
 2.08   0.020  0.020      4   0.0050 0.0050  Template::Stash::BEGIN
 2.08   0.020  0.099      9   0.0022 0.0110  Template::Config::load
 2.08   0.020  0.067      9   0.0022 0.0074  Template::BEGIN
 2.08   0.020  0.039      4   0.0049 0.0097  Lingua::EN::Inflect::Number::BEGIN
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Devel::NYTProf

 New profiling module
 Based on work from the New York Times
 Enhanced by Tim Bunce
 Pretty HTML output

− “borrowed” from Devel::Cover
 Far more flexible
 Far more powerful
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Using NYTProf

 Similar to Devel::DProf
 $ perl -d:NYTProf ./invoice.pl 244
 Writes nytprof.out
 $ nytprofhtml
 Or
 $ nytprofcsv
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Conclusions

 Don't optimise until you know you need to 
optimise

 Don't optimise until you know what to 
optimise

 Use profiling to find out what is worth 
optimising

 Use benchmarking to compare different 
solutions
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More Information

 perldoc Benchmark
 perldoc Devel::DProf
 perldoc Devel::NYTProf
 Chapters 5 and 6 of Mastering Perl
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Object Relational 
Mapping
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ORM

 Mapping database relations into objects
 Tables (relations) map onto classes
 Rows (tuples) map onto objects
 Columns (attributes) map onto attributes
 Don't write SQL
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SQL Is Tedious

 Select the id and name from this table
 Select all the details of this row
 Select something about related tables
 Update this row with these values
 Insert a new record with these values
 Delete this record
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Replacing SQL

 Instead of
 SELECT *
FROM   my_table
WHERE  my_id = 10

 and then dealing with the 
prepare/execute/fetch code
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Replacing SQL

 We can write
 use My::Object;

# warning! not a real orm
my $obj = My::Object->retrieve(10)

 Or something similar
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Writing An ORM Layer

 Not actually that hard to do yourself
 Each class needs an associated table
 Each class needs a list of columns
 Create simple SQL for basic CRUD 

operations
 Don't do that
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Perl ORM Options

 Plenty of choices on CPAN
 Tangram
 SPOPS (Simple Perl Object Persistence 

with Security)
 Alzabo
 Class::DBI
 DBIx::Class

− The current favourite
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DBIx::Class

 Standing on the shoulders of giants
 Learning from problems in Class::DBI
 More flexible
 More powerful
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DBIx::Class Example

 Modeling a CD collection
 Three tables
 artist (artistid, name)
 cd (cdid, artist, title)
 track (trackid, cd, title)
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Main Schema

 Define main schema class
 DB/Main.pm
 package DB::Main;
use base qw/DBIx::Class::Schema/;

__PACKAGE__->load_classes();

1;
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Object Classes

 DB/Main/Artist.pm
 package DB::Main::Artist;
use base qw/DBIx::Class/;
__PACKAGE__->load_components(qw/PK::Auto 
Core/);
__PACKAGE__->table('artist');
__PACKAGE__->add_columns(qw/ artistid name 
/);
__PACKAGE__->set_primary_key('artistid');
__PACKAGE__->has_many(cds =>
                      'DB::Main::Cd');
1;
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Object Classes

 DB/Main/CD.pm
 package DB::Main::CD;
use base qw/DBIx::Class/;
__PACKAGE__->load_components(qw/PK::Auto 
Core/);
__PACKAGE__->table('cd');
__PACKAGE__->add_columns(qw/ cdid artist 
title year /);
__PACKAGE__->set_primary_key('cdid');
__PACKAGE__->belongs_to(artist =>
                      'DB::Main::Artist');
1;
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Inserting Artists

 my $schema =
  DB::Main->connect($dbi_str);

my @artists = ('The Beta Band',
               'Beth Orton');

my $art_rs = $schema->resultset('Artist');

foreach (@artists) {
  $art_rs->create({ name => $_ });
}
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Inserting CDs

 Hash of Artists and CDs
 my %cds = ( 'The Three EPs' =>
                      'The Beta Band',
            'Trailer Park'  =>
                      'Beth Orton');
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Inserting CDs
 Find each artist and insert CD
 foreach (keys $cds) {
  my ($artist) = $art_rs->search(
                   { name => $cds{$_} }
                 );

  $artist->add_to_cds({
    title => $_,
  });
}
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Retrieving Data

 Get CDs by artist
 my ($artist) = $art_rs->search({
                 name => 'Beth Orton',
               });

foreach ($artist->cds) {
  say $_->title;
}
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Searching for Data

 Search conditions can be more complex
 Alternatives

− $rs->search({year => 2006},
            {year => 2007});

 Like
− $rs->search({name =>
              { 'like', 'Dav%' }});

 Combinations
− $rs->search({forename =>
              { 'like', 'Dav%' },
             surname => 'Cross' });
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Don't Repeat Yourself

 There's a problem with this approach
 Information is repeated
 Columns and relationships defined in the 

database schema
 Columns and relationships defined in class 

definitions
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Repeated Information

 CREATE TABLE artist (
  artistid INTEGER PRIMARY KEY,
  name     TEXT NOT NULL 
);
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Repeated Information

 package DB::Main::Artist;
use base qw/DBIx::Class/;
__PACKAGE__->
 load_components(qw/PK::Auto Core/);
__PACKAGE__->table('artist');
__PACKAGE__->
 add_columns(qw/ artistid name /);
__PACKAGE__>
 set_primary_key('artistid');
__PACKAGE__->has_many('cds' => 
'DB::Main::Cd');
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Database Metadata

 Some people don't put enough metadata in 
their databases

 Just tables and columns
 No relationships. No constraints
 You may as well make each column 

VARCHAR(255)
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Database Metadata

 Describe your data in your database
 It's what your database is for
 It's what your database does best
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No Metadata (Excuse 1)
 "This is the only application that will ever 

access this database"
 Bollocks
 All data will be shared eventually
 People will update your database using 

other applications
 Can you guarantee that someone won't use 

mysql to update your database?
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No Metadata (Excuse 2)
 "Our database doesn't support those 

features"
 Bollocks
 MySQL 3.x is not a database

− It's a set of data files with a vaguely SQL-like 
query syntax

 MySQL 4.x is a lot better
 MySQL 5.x is most of the way there
 Don't be constrained by using inferior tools
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DBIC::Schema::Loader

 Creates classes by querying your database 
metadata

 No more repeated data
 We are now DRY
 Schema definitions in one place
 But...
 Performance problems
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Performance Problems

 You don't really want to generate all your 
class definitions each time your program is 
run

 Need to generate the classes in advance
 dump_to_dir method
 Regenerate classes each time schema 

changes
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Alternative Approach

 Need one canonical definition of the data 
tables

 Doesn't need to be SQL DDL
 Could be in Perl code
 Write DBIx::Class definitions
 Generate DDL from those
 Harder approach

− Might need to generate ALTER TABLE
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Conclusions

 ORM is a bridge between relational objects 
and program objects

 Avoid writing SQL in common cases
 DBIx::Class is the currently fashionable 

module
 Lots of plugins
 Caveat: ORM may be overkill for simple 

programs
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More Information

 Manual pages (on CPAN)
 DBIx::Class
 DBIx::Class::Manual::*
 DBIx::Class::Schema::Loader
 Mailing list (Google for it)
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Moose
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Moose
 A complete modern object system for Perl 5
 Based on experiments with Perl 6 object 

model
 Built on top of Class::MOP

− MOP - Meta Object Protocol
− Set of abstractions for components of an object 

system
− Classes, Objects, Methods, Attributes

 An example might help
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Moose Example

 package Point;
use Moose;

has 'x' => (isa => 'Int',
            is  => 'ro');
has 'y' => (isa => 'Int',
            is  => 'rw');

sub clear {
  my $self = shift;
  $self->{x} = 0;
  $self->y(0);
}
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Understanding Moose

 There's a lot going on here
 use Moose

− Loads Moose environment
− Makes our class a subclass of Moose::Object
− Turns on strict and warnings
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Creating Attributes

 has 'x' => (isa => 'Int',
            is  => 'ro')

− Creates an attribute called 'x'
− Constrainted to be an integer
− Read-only accessor

 has 'y' => (isa => 'Int',
            is  => 'rw')
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Defining Methods

 sub clear {
  my $self = shift;
  $self->{x} = 0;
  $self->y(0);
}

 Standard method syntax
 Uses generated method to set y
 Direct hash access for x



UKUUG
26th February 2009

129

Subclassing
 package Point3D;
use Moose;

extends 'Point';

has 'z' => (isa => 'Int');

after 'clear' => sub {
  my $self = shift;
  $self->{z} = 0;
};
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Subclasses

 extends 'Point'
− Similar to use base
− Overwrites @ISA instead of appending

 has 'z' => (isa = 'Int')
− Adds new attribute 'z'
− No accessor function - private attribute
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Extending Methods

 after 'clear' => sub {
  my $self = shift;
  $self->{z} = 0;
};

 New clear method for subclass
 Called after method for superclass
 Cleaner than $self->SUPER::clear()
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Creating Objects

 Moose classes are used just like any other 
Perl class

 $point = Point->new(x => 1, y => 2);

 $p3d   = Point3D->new(x => 1,
                      y => 2,
                      z => 3);
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More About Attributes

 Use the has keyword to define your class's 
attributes

 has 'first_name' => ( is => 'rw' );
 Use is to define rw or ro
 Omitting is gives an attribute with no 

accessors
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Getting & Setting

 By default each attribute creates a method of 
the same name.

 Used for both getting and setting the 
attribute

 $dave->first_name('Dave');
 say $dave->first_name;
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Change Accessor Name

 Change accessor names using reader and 
writer

 has 'name' => (
  is => 'rw',
  reader => 'get_name',
  writer => 'set_name',
);

 See also MooseX::FollowPBP
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Required Attributes

 By default Moose class attributes are 
optional

 Change this with required
 has 'name' => (
    is       => 'ro',
    required => 1,
);

 Forces constructor to expect a name
 Although that name could be undef
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Attribute Defaults

 Set a default value for an attribute with 
default

 has 'size' => (
  is        => 'rw',
  default   => 'medium',
);

 Can use a subroutine reference
 has 'size' => (
  is        => 'rw',
  default   => \&rand_size,
);
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More Attribute Properties

 lazy
− Only populate attribute when queried

 trigger
− Subroutine called after the attribute is set

 isa
− Set the type of an attribute

 Many more
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More Moose

 Many more options
 Support for concepts like delegation and 

roles
 Powerful plugin support

− MooseX::*
 Lots of work going on in this area
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Templating
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Templating

 Many people use templates to produce web 
pages

 Advantages are well known
 Standard look and feel (static/dynamic)
 Reusable components
 Separation of code logic from display logic
 Different skill-sets (HTML vs Perl)
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Non-Web Templating

 The same advantages apply to non-web 
areas

 Reports
 Business documents
 Configuration files
 Anywhere you produce output
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DIY Templating

 Must be easy - so many people do it
 See perlfaq4
 How can I expand variables in text strings?
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DIY Templating

 $text =
'this has a $foo in it and a $bar';

%user_defs = (
  foo  => 23,
  bar  => 19,
);

$text =~ s/\$(\w+)/$user_defs{$1}/g;

 Don't do that
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Templating Options
 Dozens of template modules on CPAN
 Text::Template, HTML::Template, Mason, 

Template Toolkit
 Many, many more
 Questions to consider

− HTML only?
− Template language

 I choose the Template Toolkit
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Template Toolkit
 http://tt2.org/
 Very powerful
 Both web and non-web
 Simple template language
 Plugins give access to much of CPAN
 Can use Perl code if you want

− But don't do that
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Good Book Too!
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The Template Equation

 Data + Template = Output
 Data + Alternative Template = Alternative 

Output
 Different views of the same data
 Only the template changes
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Simple TT Example
 use Template;
use My::Object;
my ($id, $format) = @ARGV;
$format ||= 'html';
my $obj = My::Object->new($id)
  or die;
my $tt  = Template->new;
$tt->process("$format.tt",
             { obj => $obj },
             "$id.$format")
  or die $tt->error;
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html.tt
 <html>
  <head>
    <title>[% obj.name %]</title>
  </head>
  <body>
    <h1>[% obj.name %]<h1>
    <p><img src=“[% obj.img %]” /><br />
    [% obj.desc %]</p>
    <ul>
    [% FOREACH child IN obj.children -%]
      <li>[% child.name %]</li>
    [% END %]
  </body>
</html>
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text.tt
 [% obj.name | upper %]

Image: [% obj.img %]
[% obj.desc %]

[% FOREACH child IN obj.children -%]
  * [% child.name %]
[% END %]
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Adding New Formats

 No new code required
 Just add new output template
 Perl programmer need not be involved
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Equation Revisited

 Data + Template = Output
− Template Toolkit

 Template + Output = Data
− Template::Extract

 Data + Output = Template
− Template::Generate
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Catalyst
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MVC Frameworks

 MVC frameworks are a popular way to write 
applications

− Particularly web applications
 Model

− Data storage & data access
 View

− Data presentation layer
 Controller

− Business logic to glue it all together
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MVC Examples

 Ruby on Rails
 Django (Python)
 Struts (Java)
 CakePHP
 Many examples in most languages
 Perl has many options
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MVC in Perl

 Maypole
− The original Perl MVC framework

 CGI::Application
− Simple MVC for CGI programming

 Jifty
− Developed and used by Best Practical

 Catalyst
− Currently the popular choice
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Catalyst

 MVC framework in Perl
 Building on other heavily-used tools
 Model uses DBIx::Class
 View uses Template Toolkit
 These are just defaults
 Can use anything you want
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Simple Catalyst App

 Assume we already have model
− CD database from DBIx::Class section

 Use catalyst.pl to create project
 $ catalyst.pl CD
created "CD"
created "CD/script"
created "CD/lib"
created "CD/root"
... many more ...
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What Just Happened?

 Catalyst just generated a lot of useful stuff 
for us

 Test web servers
− Standalone and FastCGI

 Configuration files
 Test stubs
 Helpers for creating models, views and 

controllers
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A Working Application

 We already have a working application
 $ CD/script/cd_server.pl

... lots of output

[info] CD powered by Catalyst 5.7015
You can connect to your server at 
http://localhost:3000

 Of course, it doesn't do much yet
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Simple Catalyst App
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Next Steps

 Use various helper programs to create 
models and views for your application

 Write controller code to tie it all together
 Many plugins to handle various parts of the 

process
− Authentication
− URL resolution
− Session handling
− etc...
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Create a View
 $ script/cd_create.pl view Default TT

 exists "/home/dave/training/cdlib/CD/script/../
lib/CD/View"
 exists "/home/dave/training/cdlib/CD/script/../
t"
created "/home/dave/training/cdlib/CD/script/../
lib/CD/View/Default.pm"
created "/home/dave/training/cdlib/CD/script/../
t/view_Default.t"
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Remove Default Message

 In lib/CD/Controller/Root.pm
 sub index :Path :Args(0) {
    my ( $self, $c ) = @_;

    # Hello World
    $c->response_body($c->welcome_message);
}

 Remove response_body line
 Default behaviour is to render index.tt
 Need to create that
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index.tt

 root/index.tt
 <html>
  <head>
    <title>CDs</title>
  </head>
  <body>
    <ul>
[% FOREACH cd IN [ 1 .. 10 ] %]
      <li>CD [% cd %]</li>
[% END %]
    </ul>
  </body>
</html>



UKUUG
26th February 2009

167

New Front Page
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Adding Data

 Of course that's hard-coded data
 Need to add a model class
 And then more views
 And some controllers
 There's a lot to do
 I recommend working through a tutorial
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Easier Catalyst

 A lot of web applications do similar things
 Given a database
 Produce screens to edit the data
 Surely most of this can be automated
 It's called 

CatalystX::ListFramework::Builder
 (Demo)
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CatX::LFBuilder

 Does a lot of work
 On the fly
 For every request
 No security on table updates
 So it's not right for every project
 Very impressive though
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Conclusions

 There's a lot to bear in mind when writing a 
web app

 Using the right framework can help
 Catalyst is the most popular Perl framework
 As powerful as any other framework

− In any language
 Lots of work still going on
 Large team, active development
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Further Information
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Further Information

 Some suggestions for places to go for 
further information

 Web sites
 Books
 Magazines
 Mailing lists
 Conferences
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London Perl Mongers
 http://london.pm.org/
 Mailing list
 Regular meetings

− Both social and technical

 London Perl Workshop
 Many other local Perl Monger groups

− http://pm.org/
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Web Sites

 use Perl;
− Perl news site
− Also journals

 perl.com
− O'Reilly run site
− High quality articles
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Web Sites

 Perl Monks
− Best web site for Perl questions
− Many Perl experts

 The Perl directory
− http://perl.org/
− Lists of many Perl-related sites
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Books
 Some recent Perl books
 Perl Best Practices - Damian Conway
 Advanced Perl Programming - Simon 

Cozens
 Perl Hacks - chromatic, Conway & Poe
 Intermediate Perl - Schwartz, foy & 

Phoenix
 Mastering Perl - brian d foy
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More Books
 Higher Order Perl - Mark-Jason Dominus
 Minimal Perl - Tim Maher
 Pro Perl Debugging - Richard Foley & Joe 

McMahon
 Perl & LWP - Sean M Burke

− Updated online edition
− http://lwp.interglacial.com/

 See http://books.perl.org/
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Magazines

  The Perl Review
−  http://www.theperlreview.com/

 Randal's monthly columns
− Linux Magazine
− SysAdmin
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Mailing Lists

 Many mailing lists devoted to Perl topics
 See http://lists.cpan.org/
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Conferences
 The Open Source Convention

− San Diego 20-24 July 2009

 YAPC
− Pittsburgh 22-24 June 2009
− Lisbon 3-5 August 2009
− Brazil, Asia, Israel, Australia

 One-Day Perl Workshops
 See http://yapc.org/
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That's all folks

 Any questions?
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