
UKUUG
26th February 2009

1

Advanced Perl
Techniques

A One Day Perl Tutorial
Dave Cross

Magnum Solutions Ltd
dave@mag-sol.com

UKUUG
26th February 2009

2

Advanced Perl Techniques

 Advanced level training for Perl
programmers

 Turn intermediate programmers into
advanced programmers

 “Modern” Perl
 Perl is not dying

UKUUG
26th February 2009

3

Advanced Perl Techniques

 One day isn't enough time
 We'll be moving fairly fast
 Lots of pointers to other information
 Feel free to ask questions

UKUUG
26th February 2009

4

What We Will Cover

 What's new in Perl 5.10
 Dates and times
 Testing

− including coverage analysis
 Database access

− DBIx::Class

UKUUG
26th February 2009

5

What We Will Cover

 Profiling & Benchmarking
 Object oriented programming with Moose
 Templates
 MVC Frameworks

− Catalyst

UKUUG
26th February 2009

6

Schedule

 09:45 – Begin
 11:15 – Coffee break
 13:00 – Lunch
 14:00 – Begin
 15:30 – Coffee break
 17:00 – End

UKUUG
26th February 2009

7

Resources

 Slides available on-line
− http://mag-sol.com/train/public/2009-02/adv

 Also see Slideshare
− http://www.slideshare.net/davorg/slideshows

 Mailing List
− http://lists.mag-sol.com/mailman/listinfo/adv2009

 Get Satisfaction
− http://getsatisfaction.com/magnum

UKUUG
26th February 2009

8

Perl 5.10

UKUUG
26th February 2009

9

Perl 5.10

 Released 18th Dec 2007
− Perl's 20th birthday

 Many new features
 Well worth upgrading

UKUUG
26th February 2009

10

New Features
 Defined-or operator
 Switch operator
 Smart matching
 say()
 Lexical $_

UKUUG
26th February 2009

11

New Features

 State variables
 Stacked file tests
 Regex improvements
 Many more

UKUUG
26th February 2009

12

Defined Or
 Boolean expressions “short-circuit”
 $val = $val || $default;
 $val ||= $default;
 What if 0 is a valid value?
 Need to check “definedness”
 $val = defined $val
 ? $val : $default;

 $val = $default unless defined $val;

UKUUG
26th February 2009

13

Defined Or

 The defined or operator makes this easier
 $val = $val // $default;
 A different slant on truth
 Checks definedness
 Short version too
 $val //= $default;

UKUUG
26th February 2009

14

Switch Statement

 Switch.pm was added with Perl 5.8
 Source filter
 Parser limitations

− Regular expressions
− eval

 5.10 introduces a build-in switch statement

UKUUG
26th February 2009

15

Given ... When

 Switch is spelled “given”
 Case is spelled “when”
 Powerful matching syntax

UKUUG
26th February 2009

16

Given Example
 given ($foo) {
 when (/^abc/) { $abc = 1; }
 when (/^def/) { $def = 1; }
 when (/^xyz/) { $xyz = 1; }
 default { $nothing = 1; }
}

 Four new keywords
− given
− when
− default
− continue

UKUUG
26th February 2009

17

given

 given(EXPR)
 Assigns the result of EXPR to $_ within the

following block
 Similar to do { my $_ = EXPR; ... }

UKUUG
26th February 2009

18

when

 when (EXPR)
 Uses smart matching to compare $_ with

EXPR
 Equivalent to when ($_ ~~ EXPR)
 ~~ is the new smart match operator
 Compares two values and “does the right

thing”

UKUUG
26th February 2009

19

default

 default defines a block that is executed if no
when blocks match

 default block is optional

UKUUG
26th February 2009

20

continue

 continue keyword falls through to the next
when block

 Normal behaviour is to break out of given
block once the first when condition is
matched

 given($foo) {
 when (/x/)
 {say '$foo contains an x'; continue }
 when (/y/)
 { say '$foo contains a y' }
 default
 { say '$foo contains no x or y' }
}

UKUUG
26th February 2009

21

Smart Matching

 ~~ is the new Smart Match operator
 Different kinds of matches
 Dependent on the types of the operands
 See “perldoc perlsyn” for the full details

UKUUG
26th February 2009

22

Smart Match Examples
 $foo ~~ $bar; # == or eq
 @foo ~~ $bar; # array contains value
 %foo ~~ $bar; # hash key exists
 $foo ~~ qr{$bar}; # regex match
 @foo ~~ @bar; # arrays are identical
 %foo ~~ %bar; # hash keys match
 Many more alternatives

UKUUG
26th February 2009

23

say()

 say() is a new alternative to print()
 Adds a new line at the end of each call
 say($foo); # print $foo, “\n”;
 Two characters shorter than print
 Less typing

UKUUG
26th February 2009

24

Lexical $_

 $_ is a package variable
 Always exists in main package
 Can lead to subtle bugs when not localised

correctly
 Can now use my $_ to create a lexically

scoped variable called $_

UKUUG
26th February 2009

25

State Variables

 Lexical variables disappear when their scope
is destroyed

 sub variables {
 my $x;

 say ++$x;
}

variables() for 1 .. 3;

UKUUG
26th February 2009

26

State Variables

 State variables retain their value when their
scope is destroyed

 sub variables {
 state $x;

 say ++$x;
}

variables() for 1 .. 3;
 Like static variables in C

UKUUG
26th February 2009

27

Stacked File Tests

 People often think you can do this
 -f -w -x $file
 Previously you couldn't
 Now you can
 Equivalent to
 -x $file && -w _ && -f _

UKUUG
26th February 2009

28

Regex Improvements

 Plenty of regular expression improvements
 Named capture buffers
 Possessive quantifiers
 Relative backreferences
 New escape sequences
 Many more

UKUUG
26th February 2009

29

Named Capture Buffers

 Variables $1, $2, etc change if the regex is
altered

 Named captures retain their names
 (?<name> ...) to define
 Use new %+ hash to access them

UKUUG
26th February 2009

30

Named Capture Example

 while (<DATA>) {
 if (/(?<header>[\w\s]+)
 :\s+(?<value>.+)/x) {
 print "$+{header} -> ";
 print "$+{value}\n";
 }
}

UKUUG
26th February 2009

31

Possessive Quantifiers

 ?+, *+, ++
 Grab as much as they can
 Never give it back
 Finer control over backtracking
 'aaaa' =~ /a++a/
 Never matches

UKUUG
26th February 2009

32

Relative Backreferences

 \g{N}
 More powerful version of \1, \2, etc
 \g{1} is the same as \1
 \g{-1} is the last capture buffer
 \g{-2} is the one before that

UKUUG
26th February 2009

33

New Escape Sequences

 \h – Horizontal white space
 \v – Vertical white space
 Also \H and \V

UKUUG
26th February 2009

34

Accessing New Features

 Some new features would break backwards
compatibility

 They are therefore turned off by default
 Turn them on with the feature pragma
 use feature 'say';
 use feature 'switch';
 use feature 'state';
 use feature ':5.10';

UKUUG
26th February 2009

35

Implicit Loading

 Two ways to automatically turn on 5.10
features

 Require a high enough version of Perl
 use 5.10.0; # Or higher
 -E command line option
 perl -e 'say “hello”'
 perl -E 'say “hello”'

UKUUG
26th February 2009

36

Dates and Times

UKUUG
26th February 2009

37

Dates & Times

 Dozens of date/time modules on CPAN
 Date::Manip is almost never what you want
 Date::Calc, Date::Parse, Class::Date,

Date::Simple, etc
 Which one do you choose?

UKUUG
26th February 2009

38

Perl DateTime Project

 http://datetime.perl.org/

 "The DateTime family of modules present a
unified way to handle dates and times in
Perl"

 "unified" is good
 Dozens of modules that work together in a

consistent fashion

UKUUG
26th February 2009

39

Using DateTime

 use DateTime;
my $dt = DateTime->now;
say $dt;
2009-02-26T11:06:07
say $dt->ymd;
2009-02-26
say $dt->hms;
11:08:16

UKUUG
26th February 2009

40

Using DateTime

 use DateTime;
my $dt = DateTime->new(year => 2009,
 month => 2,
 day => 26);
say $dt->ymd('/');
2009/02/26
say $dt->month; # 2
say $dt->month_name; # February

UKUUG
26th February 2009

41

Arithmetic

 A DateTime object is a point in time
 For date arithmetic you need a duration
 Number of years, weeks, days, etc

UKUUG
26th February 2009

42

Arithmetic

 use DateTime;
my $dt = DateTime->new(year => 2009,
 month => 2,
 day => 26);
my $two_weeks =
DateTime::Duration->new(weeks => 2);
$dt += $two_weeks;
say $dt;
2009-03-12T00:00:00

UKUUG
26th February 2009

43

Formatting Output

 use DateTime;
my $dt = DateTime->new(year => 2009,
 month => 2,
 day => 26);
say $dt->strftime('%A, %d %B %Y');
Tuesday, 26 February 2009

 Control input format with
DateTime::Format::Strptime

UKUUG
26th February 2009

44

Parsing & Formatting
 Ready made parsers and formatters for

popular date and time formats
 DateTime::Format::HTTP
 DateTime::Format::MySQL
 DateTime::Format::Excel
 DateTime::Format::Baby

− the big hand is on...

UKUUG
26th February 2009

45

Alternative Calendars

 Handling non-standard calendars
 DateTime::Calendar::Julian
 DateTime::Calendar::Hebrew
 DateTime::Calendar::Mayan
 DateTime::Fiction::JRRTolkien::Shire

UKUUG
26th February 2009

46

Calendar Examples
 use DateTime::Calendar::Mayan;

my $dt = DateTime::Calendar::Mayan->now;

say $dt->date; # 12.19.16.1.15
 use DateTime::Fiction::JRRTolkien::Shire

my $dt =
 DateTime::Fiction::JRRTolkien::Shire->now;

say $dt->on_date;
Mersday 24 Solmath 7473

UKUUG
26th February 2009

47

Testing

UKUUG
26th February 2009

48

Testing

 Never program without a safety net
 Does your code do what it is supposed to

do?
 Will your code continue to do what it is

supposed to do?
 Write unit tests
 Run those tests all the time

UKUUG
26th February 2009

49

When to Run Tests

 As often as possible
 Before you add a feature
 After you have added a feature
 Before checking in code
 Before releasing code
 Constantly, automatically

UKUUG
26th February 2009

50

Testing in Perl

 Perl makes it easy to write test suites
 A lot of work in this area over the last eight

years
 Test::Simple and Test::More included in

Perl distribution
 Many more testing modules on CPAN

UKUUG
26th February 2009

51

Simple Test Program

 use Test::More tests => 4;

BEGIN { use_ok('My::Object'); }

ok(my $obj = My::Object->new);
isa_ok($obj, 'My::Object');
$obj->set_foo('Foo');
is($obj->get_foo, 'Foo');

UKUUG
26th February 2009

52

Simple Test Output
 $ prove -v test.t
test....
1..4
ok 1 - use My::Object;
ok 2
ok 3 - The object isa My::Object
ok 4
ok
All tests successful.
Files=1, Tests=4, 0 wallclock secs (
0.02 usr 0.00 sys + 0.05 cusr 0.00
csys = 0.07 CPU)
Result: PASS

UKUUG
26th February 2009

53

Adding Test Names

 use Test::More tests => 4;
BEGIN { use_ok('My::Object'); }

ok(my $obj = My::Object->new,
 'Got an object');
isa_ok($obj, 'My::Object');
$obj->set_foo('Foo');
is($obj->get_foo, 'Foo',
 'The foo is "Foo"');

UKUUG
26th February 2009

54

Output With Names
 $ prove -v test2.t
test2....
1..4
ok 1 - use My::Object;
ok 2 - got an object
ok 3 - The object isa My::Object
ok 4 - The foo is "Foo"
ok
All tests successful.
Files=1, Tests=4, 0 wallclock secs (
0.02 usr 0.00 sys + 0.05 cusr 0.00
csys = 0.07 CPU)
Result: PASS

UKUUG
26th February 2009

55

Using prove
 prove is a command line tool for running

tests
 Runs given tests using Test::Harness
 Comes with the Perl distribution
 Command line options

− -v verbose output
− -r recurse
− -s shuffle tests
− Many more

UKUUG
26th February 2009

56

Test Anything Protocol

 Perl tests have been spitting out “ok 1” and
not “ok 2” for years

 Now this ad-hoc format has a definition
and a name

 The Test Anything Protocol (TAP)
 See Test::Harness::TAP (documentation

module) and TAP::Parser

UKUUG
26th February 2009

57

TAP Output

 More possibilities for test output
− TAP::Harness::Color
− Test::TAP::HTMLMatrix

 Make sense of your test results

UKUUG
26th February 2009

58

More Testing Modules

 Dozens of testing modules on CPAN
 Some of my favourites
 Test::File
 Test::Exception, Test::Warn
 Test::Differences
 Test::XML (includes Test::XML::XPath)

UKUUG
26th February 2009

59

Writing Test Modules

 These test modules all work together
 Built using Test::Builder
 Ensures that test modules all use the same

framework
 Use it as the basis of your own Test::*

modules
 Who tests the testers?
 Test your Test::Builder test modules with

Test::Builder::Tester

UKUUG
26th February 2009

60

Mocking Objects

 Sometimes it's hard to test external interfaces
 Fake them
 Test::MockObject pretends to be other

objects
 Gives you complete control over what they

return

UKUUG
26th February 2009

61

Testing Reactors

 You're writing code that monitors a nuclear
reactor

 It's important that your code reacts correctly
when the reactor overheats

 You don't have a reactor in the test
environment

UKUUG
26th February 2009

62

Testing Reactors

 Even if you did, you wouldn't want to make
it overheat every time you run the tests

 Especially if you're not 100% sure of your
code

 Or if you're running unattended smoke tests
 Fake it with a mock object

UKUUG
26th February 2009

63

My::Monitor Spec

 If the temperature of a reactor is over 100
then try to cool it down

 If you have tried cooling a reactor down 5
times and the temperature is still over 100
then return an error

UKUUG
26th February 2009

64

My::Monitor Code
 package My::Monitor;

sub new {
 my $class = shift;
 my $self = { tries => 0 };

 return bless $self, $class;
}

UKUUG
26th February 2009

65

My::Monitor Code

 sub check {
 my $self = shift;
 my $reactor = shift;

 my $temp = $reactor->temperature;

 if ($temp > 100) {
 $reactor->cooldown;
 ++$self->{tries};
 if ($self->{tries} > 5) {
 return;
 }
 return 1;

UKUUG
26th February 2009

66

My::Monitor Code
 } else {
 $self->{tries} = 0;
 return 1;
 }
}

1;

UKUUG
26th February 2009

67

Mock Reactor

 Create a mock reactor object that acts
exactly how we want it to

 Reactor object has two interesting methods
 temperature - returns the current temperature
 cooldown - cools reactor and returns success

or failure

UKUUG
26th February 2009

68

monitor.t
 use Test::More tests => 10;

use Test::MockObject->new;

Standard tests

BEGIN { use_ok('My::Monitor'); }

ok(my $mon = My::Monitor->new);
isa_ok($mon, 'My::Monitor');

UKUUG
26th February 2009

69

monitor.t
 # Create Mock Reactor Object

my $t = 10;
my $reactor = Test::MockObject;

$reactor->set_bound('temperature',
 \$t);

$reactor->set_true('cooldown');

UKUUG
26th February 2009

70

monitor.t
 # Test reactor

ok($mon->check($reactor));

$t = 120;

ok($mon->check($reactor)) for 1 .. 5;

ok(!$mon->check($reactor));

UKUUG
26th February 2009

71

How Good Are Your Tests?
 How much of your code is exercised by your

tests?
 Devel::Cover can help you to find out
 Deep internal magic
 Draws pretty charts

− HARNESS_PERL_SWITCHES=
-MDevel::Cover make test

− cover

UKUUG
26th February 2009

72

Devel::Cover Output

UKUUG
26th February 2009

73

Devel::Cover Output

UKUUG
26th February 2009

74

Devel::Cover Output

UKUUG
26th February 2009

75

Alternative Test Paradigms

 Not everyone likes the Perl testing
framework

 Other frameworks are available
 Test::Class

− xUnit style framework
 Test::FIT

− Framework for Interactive Testing
− http://fit.c2.com

UKUUG
26th February 2009

76

More Information
 Perl Testing: A Developer's Notebook (Ian

Langworth & chromatic)
 perldoc Test::Tutorial
 perldoc Test::Simple
 perldoc Test::More
 perldoc Test::Builder
 etc...

UKUUG
26th February 2009

77

Benchmarking

UKUUG
26th February 2009

78

Benchmarking

 Ensure that your program is fast enough
 But how fast is fast enough?
 premature optimization is the root of all

evil
− Donald Knuth
− paraphrasing Tony Hoare

 Don't optimise until you know what to
optimise

UKUUG
26th February 2009

79

Benchmark.pm
 Standard Perl module for benchmarking
 Simple usage
 use Benchmark;
my %methods = (
 method1 => sub { ... },
 method2 => sub { ... },
);
timethese(10_000, \%methods);

 Times 10,000 iterations of each method

UKUUG
26th February 2009

80

Benchmark.pm Output

 Benchmark: timing 10000 iterations of
method1, method2...
 method1: 6 wallclock secs \
 (2.12 usr + 3.47 sys = 5.59 CPU) \
 @ 1788.91/s (n=10000)
 method2: 3 wallclock secs \
 (0.85 usr + 1.70 sys = 2.55 CPU) \
 @ 3921.57/s (n=10000)

UKUUG
26th February 2009

81

Timed Benchmarks

 Passing timethese a positive number
runs each piece of code a certain number of
times

 Passing timethese a negative number
runs each piece of code for a certain
number of seconds

UKUUG
26th February 2009

82

Timed Benchmarks

 use Benchmark;
my %methods = (
 method1 => sub { ... },
 method2 => sub { ... },
);

Run for 10,000(!) seconds
timethese(-10_000, \%methods);

UKUUG
26th February 2009

83

Comparing Performance

 Use cmpthese to get a tabular output
 Optional export
 use Benchmark 'cmpthese';
my %methods = (
 method1 => sub { ... },
 method2 => sub { ... },
);
cmpthese(10_000, \%methods);

UKUUG
26th February 2009

84

cmpthese Output

 Rate method1 method2
method1 2831802/s -- -61%
method2 7208959/s 155% --

 method2 is 61% slower than method1
 Can also pass negative number to
cmpthese

UKUUG
26th February 2009

85

Benchmarking is Hard

 Very easy to produce lots of numbers
 Harder to ensure that the numbers are

meaningful
 Compare code fragments that do the same

thing

UKUUG
26th February 2009

86

Bad Benchmarking

 use Benchmark qw{ timethese };
timethese(1_000, {
 Ordinary => sub {
 my @results = sort { -M $a <=> -M $b }
 glob "/bin/*";
},
 Schwartzian => sub {
 map $_->[0],
 sort { $a->[1] <=> $b->[1] }
 map [$_, -M], glob "/bin/*";
 },
});

UKUUG
26th February 2009

87

What to Benchmark

 Profile your code
 See which parts it is worth working on
 Look for code that

− Takes a long time to run, or
− Is called many times, or
− Both

UKUUG
26th February 2009

88

Devel::DProf

 Devel::DProf is the standard Perl profiling
tool

 Included with Perl distribution
 Uses Perl debugger hooks
 perl -d:DProf your_program
 Produces a data file called tmon.out
 Command line program dprofpp to view

results

UKUUG
26th February 2009

89

Sample Output
 $ perl -d:DProf ./invoice.pl 244

$ dprofpp
Total Elapsed Time = 1.173152 Seconds
 User+System Time = 0.963152 Seconds
Exclusive Times
%Time ExclSec CumulS #Calls sec/call Csec/c Name
 6.02 0.058 0.067 482 0.0001 0.0001 Params::Validate::_validate
 5.09 0.049 0.114 7 0.0070 0.0163 Class::DBI::Loader::mysql::BEGIN
 4.15 0.040 0.050 10 0.0040 0.0050 Template::Parser::BEGIN
 4.15 0.040 0.166 7 0.0057 0.0237 DateTime::Locale::BEGIN
 4.05 0.039 0.094 43 0.0009 0.0022 base::import
 3.74 0.036 0.094 449 0.0001 0.0002 DateTime::Locale::_register
 3.11 0.030 0.280 4 0.0074 0.0700 DateTime::Format::MySQL::BEGIN
 2.91 0.028 0.028 170 0.0002 0.0002 Lingua::EN::Inflect::_PL_noun
 2.70 0.026 0.040 1 0.0262 0.0401 Template::Parser::_parse
 2.49 0.024 0.024 1113 0.0000 0.0000 Class::Data::Inheritable::__ANON__
 2.08 0.020 0.020 12 0.0017 0.0017 DBD::mysql::db::_login
 2.08 0.020 0.020 4 0.0050 0.0050 Template::Stash::BEGIN
 2.08 0.020 0.099 9 0.0022 0.0110 Template::Config::load
 2.08 0.020 0.067 9 0.0022 0.0074 Template::BEGIN
 2.08 0.020 0.039 4 0.0049 0.0097 Lingua::EN::Inflect::Number::BEGIN

UKUUG
26th February 2009

90

Devel::NYTProf

 New profiling module
 Based on work from the New York Times
 Enhanced by Tim Bunce
 Pretty HTML output

− “borrowed” from Devel::Cover
 Far more flexible
 Far more powerful

UKUUG
26th February 2009

91

Using NYTProf

 Similar to Devel::DProf
 $ perl -d:NYTProf ./invoice.pl 244
 Writes nytprof.out
 $ nytprofhtml
 Or
 $ nytprofcsv

UKUUG
26th February 2009

92

Conclusions

 Don't optimise until you know you need to
optimise

 Don't optimise until you know what to
optimise

 Use profiling to find out what is worth
optimising

 Use benchmarking to compare different
solutions

UKUUG
26th February 2009

93

More Information

 perldoc Benchmark
 perldoc Devel::DProf
 perldoc Devel::NYTProf
 Chapters 5 and 6 of Mastering Perl

UKUUG
26th February 2009

94

Object Relational
Mapping

UKUUG
26th February 2009

95

ORM

 Mapping database relations into objects
 Tables (relations) map onto classes
 Rows (tuples) map onto objects
 Columns (attributes) map onto attributes
 Don't write SQL

UKUUG
26th February 2009

96

SQL Is Tedious

 Select the id and name from this table
 Select all the details of this row
 Select something about related tables
 Update this row with these values
 Insert a new record with these values
 Delete this record

UKUUG
26th February 2009

97

Replacing SQL

 Instead of
 SELECT *
FROM my_table
WHERE my_id = 10

 and then dealing with the
prepare/execute/fetch code

UKUUG
26th February 2009

98

Replacing SQL

 We can write
 use My::Object;

warning! not a real orm
my $obj = My::Object->retrieve(10)

 Or something similar

UKUUG
26th February 2009

99

Writing An ORM Layer

 Not actually that hard to do yourself
 Each class needs an associated table
 Each class needs a list of columns
 Create simple SQL for basic CRUD

operations
 Don't do that

UKUUG
26th February 2009

100

Perl ORM Options

 Plenty of choices on CPAN
 Tangram
 SPOPS (Simple Perl Object Persistence

with Security)
 Alzabo
 Class::DBI
 DBIx::Class

− The current favourite

UKUUG
26th February 2009

101

DBIx::Class

 Standing on the shoulders of giants
 Learning from problems in Class::DBI
 More flexible
 More powerful

UKUUG
26th February 2009

102

DBIx::Class Example

 Modeling a CD collection
 Three tables
 artist (artistid, name)
 cd (cdid, artist, title)
 track (trackid, cd, title)

UKUUG
26th February 2009

103

Main Schema

 Define main schema class
 DB/Main.pm
 package DB::Main;
use base qw/DBIx::Class::Schema/;

__PACKAGE__->load_classes();

1;

UKUUG
26th February 2009

104

Object Classes

 DB/Main/Artist.pm
 package DB::Main::Artist;
use base qw/DBIx::Class/;
__PACKAGE__->load_components(qw/PK::Auto
Core/);
__PACKAGE__->table('artist');
__PACKAGE__->add_columns(qw/ artistid name
/);
__PACKAGE__->set_primary_key('artistid');
__PACKAGE__->has_many(cds =>
 'DB::Main::Cd');
1;

UKUUG
26th February 2009

105

Object Classes

 DB/Main/CD.pm
 package DB::Main::CD;
use base qw/DBIx::Class/;
__PACKAGE__->load_components(qw/PK::Auto
Core/);
__PACKAGE__->table('cd');
__PACKAGE__->add_columns(qw/ cdid artist
title year /);
__PACKAGE__->set_primary_key('cdid');
__PACKAGE__->belongs_to(artist =>
 'DB::Main::Artist');
1;

UKUUG
26th February 2009

106

Inserting Artists

 my $schema =
 DB::Main->connect($dbi_str);

my @artists = ('The Beta Band',
 'Beth Orton');

my $art_rs = $schema->resultset('Artist');

foreach (@artists) {
 $art_rs->create({ name => $_ });
}

UKUUG
26th February 2009

107

Inserting CDs

 Hash of Artists and CDs
 my %cds = ('The Three EPs' =>
 'The Beta Band',
 'Trailer Park' =>
 'Beth Orton');

UKUUG
26th February 2009

108

Inserting CDs
 Find each artist and insert CD
 foreach (keys $cds) {
 my ($artist) = $art_rs->search(
 { name => $cds{$_} }
);

 $artist->add_to_cds({
 title => $_,
 });
}

UKUUG
26th February 2009

109

Retrieving Data

 Get CDs by artist
 my ($artist) = $art_rs->search({
 name => 'Beth Orton',
 });

foreach ($artist->cds) {
 say $_->title;
}

UKUUG
26th February 2009

110

Searching for Data

 Search conditions can be more complex
 Alternatives

− $rs->search({year => 2006},
 {year => 2007});

 Like
− $rs->search({name =>
 { 'like', 'Dav%' }});

 Combinations
− $rs->search({forename =>
 { 'like', 'Dav%' },
 surname => 'Cross' });

UKUUG
26th February 2009

111

Don't Repeat Yourself

 There's a problem with this approach
 Information is repeated
 Columns and relationships defined in the

database schema
 Columns and relationships defined in class

definitions

UKUUG
26th February 2009

112

Repeated Information

 CREATE TABLE artist (
 artistid INTEGER PRIMARY KEY,
 name TEXT NOT NULL
);

UKUUG
26th February 2009

113

Repeated Information

 package DB::Main::Artist;
use base qw/DBIx::Class/;
__PACKAGE__->
 load_components(qw/PK::Auto Core/);
__PACKAGE__->table('artist');
__PACKAGE__->
 add_columns(qw/ artistid name /);
__PACKAGE__>
 set_primary_key('artistid');
__PACKAGE__->has_many('cds' =>
'DB::Main::Cd');

UKUUG
26th February 2009

114

Database Metadata

 Some people don't put enough metadata in
their databases

 Just tables and columns
 No relationships. No constraints
 You may as well make each column

VARCHAR(255)

UKUUG
26th February 2009

115

Database Metadata

 Describe your data in your database
 It's what your database is for
 It's what your database does best

UKUUG
26th February 2009

116

No Metadata (Excuse 1)
 "This is the only application that will ever

access this database"
 Bollocks
 All data will be shared eventually
 People will update your database using

other applications
 Can you guarantee that someone won't use

mysql to update your database?

UKUUG
26th February 2009

117

No Metadata (Excuse 2)
 "Our database doesn't support those

features"
 Bollocks
 MySQL 3.x is not a database

− It's a set of data files with a vaguely SQL-like
query syntax

 MySQL 4.x is a lot better
 MySQL 5.x is most of the way there
 Don't be constrained by using inferior tools

UKUUG
26th February 2009

118

DBIC::Schema::Loader

 Creates classes by querying your database
metadata

 No more repeated data
 We are now DRY
 Schema definitions in one place
 But...
 Performance problems

UKUUG
26th February 2009

119

Performance Problems

 You don't really want to generate all your
class definitions each time your program is
run

 Need to generate the classes in advance
 dump_to_dir method
 Regenerate classes each time schema

changes

UKUUG
26th February 2009

120

Alternative Approach

 Need one canonical definition of the data
tables

 Doesn't need to be SQL DDL
 Could be in Perl code
 Write DBIx::Class definitions
 Generate DDL from those
 Harder approach

− Might need to generate ALTER TABLE

UKUUG
26th February 2009

121

Conclusions

 ORM is a bridge between relational objects
and program objects

 Avoid writing SQL in common cases
 DBIx::Class is the currently fashionable

module
 Lots of plugins
 Caveat: ORM may be overkill for simple

programs

UKUUG
26th February 2009

122

More Information

 Manual pages (on CPAN)
 DBIx::Class
 DBIx::Class::Manual::*
 DBIx::Class::Schema::Loader
 Mailing list (Google for it)

UKUUG
26th February 2009

123

Moose

UKUUG
26th February 2009

124

Moose
 A complete modern object system for Perl 5
 Based on experiments with Perl 6 object

model
 Built on top of Class::MOP

− MOP - Meta Object Protocol
− Set of abstractions for components of an object

system
− Classes, Objects, Methods, Attributes

 An example might help

UKUUG
26th February 2009

125

Moose Example

 package Point;
use Moose;

has 'x' => (isa => 'Int',
 is => 'ro');
has 'y' => (isa => 'Int',
 is => 'rw');

sub clear {
 my $self = shift;
 $self->{x} = 0;
 $self->y(0);
}

UKUUG
26th February 2009

126

Understanding Moose

 There's a lot going on here
 use Moose

− Loads Moose environment
− Makes our class a subclass of Moose::Object
− Turns on strict and warnings

UKUUG
26th February 2009

127

Creating Attributes

 has 'x' => (isa => 'Int',
 is => 'ro')

− Creates an attribute called 'x'
− Constrainted to be an integer
− Read-only accessor

 has 'y' => (isa => 'Int',
 is => 'rw')

UKUUG
26th February 2009

128

Defining Methods

 sub clear {
 my $self = shift;
 $self->{x} = 0;
 $self->y(0);
}

 Standard method syntax
 Uses generated method to set y
 Direct hash access for x

UKUUG
26th February 2009

129

Subclassing
 package Point3D;
use Moose;

extends 'Point';

has 'z' => (isa => 'Int');

after 'clear' => sub {
 my $self = shift;
 $self->{z} = 0;
};

UKUUG
26th February 2009

130

Subclasses

 extends 'Point'
− Similar to use base
− Overwrites @ISA instead of appending

 has 'z' => (isa = 'Int')
− Adds new attribute 'z'
− No accessor function - private attribute

UKUUG
26th February 2009

131

Extending Methods

 after 'clear' => sub {
 my $self = shift;
 $self->{z} = 0;
};

 New clear method for subclass
 Called after method for superclass
 Cleaner than $self->SUPER::clear()

UKUUG
26th February 2009

132

Creating Objects

 Moose classes are used just like any other
Perl class

 $point = Point->new(x => 1, y => 2);

 $p3d = Point3D->new(x => 1,
 y => 2,
 z => 3);

UKUUG
26th February 2009

133

More About Attributes

 Use the has keyword to define your class's
attributes

 has 'first_name' => (is => 'rw');
 Use is to define rw or ro
 Omitting is gives an attribute with no

accessors

UKUUG
26th February 2009

134

Getting & Setting

 By default each attribute creates a method of
the same name.

 Used for both getting and setting the
attribute

 $dave->first_name('Dave');
 say $dave->first_name;

UKUUG
26th February 2009

135

Change Accessor Name

 Change accessor names using reader and
writer

 has 'name' => (
 is => 'rw',
 reader => 'get_name',
 writer => 'set_name',
);

 See also MooseX::FollowPBP

UKUUG
26th February 2009

136

Required Attributes

 By default Moose class attributes are
optional

 Change this with required
 has 'name' => (
 is => 'ro',
 required => 1,
);

 Forces constructor to expect a name
 Although that name could be undef

UKUUG
26th February 2009

137

Attribute Defaults

 Set a default value for an attribute with
default

 has 'size' => (
 is => 'rw',
 default => 'medium',
);

 Can use a subroutine reference
 has 'size' => (
 is => 'rw',
 default => \&rand_size,
);

UKUUG
26th February 2009

138

More Attribute Properties

 lazy
− Only populate attribute when queried

 trigger
− Subroutine called after the attribute is set

 isa
− Set the type of an attribute

 Many more

UKUUG
26th February 2009

139

More Moose

 Many more options
 Support for concepts like delegation and

roles
 Powerful plugin support

− MooseX::*
 Lots of work going on in this area

UKUUG
26th February 2009

140

Templating

UKUUG
26th February 2009

141

Templating

 Many people use templates to produce web
pages

 Advantages are well known
 Standard look and feel (static/dynamic)
 Reusable components
 Separation of code logic from display logic
 Different skill-sets (HTML vs Perl)

UKUUG
26th February 2009

142

Non-Web Templating

 The same advantages apply to non-web
areas

 Reports
 Business documents
 Configuration files
 Anywhere you produce output

UKUUG
26th February 2009

143

DIY Templating

 Must be easy - so many people do it
 See perlfaq4
 How can I expand variables in text strings?

UKUUG
26th February 2009

144

DIY Templating

 $text =
'this has a $foo in it and a $bar';

%user_defs = (
 foo => 23,
 bar => 19,
);

$text =~ s/\$(\w+)/$user_defs{$1}/g;

 Don't do that

UKUUG
26th February 2009

145

Templating Options
 Dozens of template modules on CPAN
 Text::Template, HTML::Template, Mason,

Template Toolkit
 Many, many more
 Questions to consider

− HTML only?
− Template language

 I choose the Template Toolkit

UKUUG
26th February 2009

146

Template Toolkit
 http://tt2.org/
 Very powerful
 Both web and non-web
 Simple template language
 Plugins give access to much of CPAN
 Can use Perl code if you want

− But don't do that

UKUUG
26th February 2009

147

Good Book Too!

UKUUG
26th February 2009

148

The Template Equation

 Data + Template = Output
 Data + Alternative Template = Alternative

Output
 Different views of the same data
 Only the template changes

UKUUG
26th February 2009

149

Simple TT Example
 use Template;
use My::Object;
my ($id, $format) = @ARGV;
$format ||= 'html';
my $obj = My::Object->new($id)
 or die;
my $tt = Template->new;
$tt->process("$format.tt",
 { obj => $obj },
 "$id.$format")
 or die $tt->error;

UKUUG
26th February 2009

150

html.tt
 <html>
 <head>
 <title>[% obj.name %]</title>
 </head>
 <body>
 <h1>[% obj.name %]<h1>
 <p>

 [% obj.desc %]</p>

 [% FOREACH child IN obj.children -%]
 [% child.name %]
 [% END %]
 </body>
</html>

UKUUG
26th February 2009

151

text.tt
 [% obj.name | upper %]

Image: [% obj.img %]
[% obj.desc %]

[% FOREACH child IN obj.children -%]
 * [% child.name %]
[% END %]

UKUUG
26th February 2009

152

Adding New Formats

 No new code required
 Just add new output template
 Perl programmer need not be involved

UKUUG
26th February 2009

153

Equation Revisited

 Data + Template = Output
− Template Toolkit

 Template + Output = Data
− Template::Extract

 Data + Output = Template
− Template::Generate

UKUUG
26th February 2009

154

Catalyst

UKUUG
26th February 2009

155

MVC Frameworks

 MVC frameworks are a popular way to write
applications

− Particularly web applications
 Model

− Data storage & data access
 View

− Data presentation layer
 Controller

− Business logic to glue it all together

UKUUG
26th February 2009

156

MVC Examples

 Ruby on Rails
 Django (Python)
 Struts (Java)
 CakePHP
 Many examples in most languages
 Perl has many options

UKUUG
26th February 2009

157

MVC in Perl

 Maypole
− The original Perl MVC framework

 CGI::Application
− Simple MVC for CGI programming

 Jifty
− Developed and used by Best Practical

 Catalyst
− Currently the popular choice

UKUUG
26th February 2009

158

Catalyst

 MVC framework in Perl
 Building on other heavily-used tools
 Model uses DBIx::Class
 View uses Template Toolkit
 These are just defaults
 Can use anything you want

UKUUG
26th February 2009

159

Simple Catalyst App

 Assume we already have model
− CD database from DBIx::Class section

 Use catalyst.pl to create project
 $ catalyst.pl CD
created "CD"
created "CD/script"
created "CD/lib"
created "CD/root"
... many more ...

UKUUG
26th February 2009

160

What Just Happened?

 Catalyst just generated a lot of useful stuff
for us

 Test web servers
− Standalone and FastCGI

 Configuration files
 Test stubs
 Helpers for creating models, views and

controllers

UKUUG
26th February 2009

161

A Working Application

 We already have a working application
 $ CD/script/cd_server.pl

... lots of output

[info] CD powered by Catalyst 5.7015
You can connect to your server at
http://localhost:3000

 Of course, it doesn't do much yet

UKUUG
26th February 2009

162

Simple Catalyst App

UKUUG
26th February 2009

163

Next Steps

 Use various helper programs to create
models and views for your application

 Write controller code to tie it all together
 Many plugins to handle various parts of the

process
− Authentication
− URL resolution
− Session handling
− etc...

UKUUG
26th February 2009

164

Create a View
 $ script/cd_create.pl view Default TT

 exists "/home/dave/training/cdlib/CD/script/../
lib/CD/View"
 exists "/home/dave/training/cdlib/CD/script/../
t"
created "/home/dave/training/cdlib/CD/script/../
lib/CD/View/Default.pm"
created "/home/dave/training/cdlib/CD/script/../
t/view_Default.t"

UKUUG
26th February 2009

165

Remove Default Message

 In lib/CD/Controller/Root.pm
 sub index :Path :Args(0) {
 my ($self, $c) = @_;

 # Hello World
 $c->response_body($c->welcome_message);
}

 Remove response_body line
 Default behaviour is to render index.tt
 Need to create that

UKUUG
26th February 2009

166

index.tt

 root/index.tt
 <html>
 <head>
 <title>CDs</title>
 </head>
 <body>

[% FOREACH cd IN [1 .. 10] %]
 CD [% cd %]
[% END %]

 </body>
</html>

UKUUG
26th February 2009

167

New Front Page

UKUUG
26th February 2009

168

Adding Data

 Of course that's hard-coded data
 Need to add a model class
 And then more views
 And some controllers
 There's a lot to do
 I recommend working through a tutorial

UKUUG
26th February 2009

169

Easier Catalyst

 A lot of web applications do similar things
 Given a database
 Produce screens to edit the data
 Surely most of this can be automated
 It's called

CatalystX::ListFramework::Builder
 (Demo)

UKUUG
26th February 2009

170

CatX::LFBuilder

 Does a lot of work
 On the fly
 For every request
 No security on table updates
 So it's not right for every project
 Very impressive though

UKUUG
26th February 2009

171

Conclusions

 There's a lot to bear in mind when writing a
web app

 Using the right framework can help
 Catalyst is the most popular Perl framework
 As powerful as any other framework

− In any language
 Lots of work still going on
 Large team, active development

UKUUG
26th February 2009

172

Further Information

UKUUG
26th February 2009

173

Further Information

 Some suggestions for places to go for
further information

 Web sites
 Books
 Magazines
 Mailing lists
 Conferences

UKUUG
26th February 2009

174

London Perl Mongers
 http://london.pm.org/
 Mailing list
 Regular meetings

− Both social and technical

 London Perl Workshop
 Many other local Perl Monger groups

− http://pm.org/

UKUUG
26th February 2009

175

Web Sites

 use Perl;
− Perl news site
− Also journals

 perl.com
− O'Reilly run site
− High quality articles

UKUUG
26th February 2009

176

Web Sites

 Perl Monks
− Best web site for Perl questions
− Many Perl experts

 The Perl directory
− http://perl.org/
− Lists of many Perl-related sites

UKUUG
26th February 2009

177

Books
 Some recent Perl books
 Perl Best Practices - Damian Conway
 Advanced Perl Programming - Simon

Cozens
 Perl Hacks - chromatic, Conway & Poe
 Intermediate Perl - Schwartz, foy &

Phoenix
 Mastering Perl - brian d foy

UKUUG
26th February 2009

178

More Books
 Higher Order Perl - Mark-Jason Dominus
 Minimal Perl - Tim Maher
 Pro Perl Debugging - Richard Foley & Joe

McMahon
 Perl & LWP - Sean M Burke

− Updated online edition
− http://lwp.interglacial.com/

 See http://books.perl.org/

UKUUG
26th February 2009

179

Magazines

 The Perl Review
− http://www.theperlreview.com/

 Randal's monthly columns
− Linux Magazine
− SysAdmin

UKUUG
26th February 2009

180

Mailing Lists

 Many mailing lists devoted to Perl topics
 See http://lists.cpan.org/

UKUUG
26th February 2009

181

Conferences
 The Open Source Convention

− San Diego 20-24 July 2009

 YAPC
− Pittsburgh 22-24 June 2009
− Lisbon 3-5 August 2009
− Brazil, Asia, Israel, Australia

 One-Day Perl Workshops
 See http://yapc.org/

UKUUG
26th February 2009

182

That's all folks

 Any questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182

