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Advanced Perl Technigues

* Advanced level training for Perl
programmers

* Turn intermediate programmers into
advanced programmers

* “Modern” Perl
* Perl is not dying
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Advanced Perl Technigues

* One day isn't enough time
* We'll be moving fairly fast
* Lots of pointers to other information

* Feel free to ask questions
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What We Will Cover

* What's new in Perl 5.10
* Dates and times
* Testing
~ including coverage analysis

 Database access
- DBIx::Class
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What We Will Cover

* Profiling & Benchmarking
* Object oriented programming with Moose

* Templates

e MVC Frameworks
- Catalyst
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Schedule

* 09:45 — Begin

e 11:15 — Coftfee break
* 13:00 — Lunch

* 14:00 — Begin

e 15:30 — Coftee break
e 17:00 — End
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Resources

* Slides available on-line
~ http://mag-sol.com/train/public/2009-02/adv
* Also see Slideshare
~ http://www.slideshare.net/davorg/slideshows
* Mailing List
~ http://lists.mag-sol.com/mailman/listinfo/adv2009
* Get Satisfaction
~ http://getsatisfaction.com/magnum
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Perl 5.10

* Released 18" Dec 2007
= Perl's 20" birthday

* Many new features
* Well worth upgrading
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New Features

* Defined-or operator
* Switch operator
* Smart matching

* say()
e Lexical $
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New Features

e State variables

* Stacked file tests

* Regex improvements
* Many more
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Defined Or

* Boolean expressions “short-circuit
« $val = $val || $default;
« $val ||= $default;

e What if 0 is a valid value?

* Need to check “definedness”

e $val = defined $val
? $val : $default;

« $val = $default unless defined $val;

b
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Defined Or

* The defined or operator makes this easier
« $val = $val // $default;

e A different slant on truth
 Checks definedness

 Short version too
« $val //= $default;
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Switch Statement

* Switch.pm was added with Perl 5.8
* Source filter

 Parser limitations

~ Regular expressions
~ eval

e 5.10 introduces a build-in switch statement

UKUUG
26" February 2009




Given ... When

* Switch is spelled “given”
* Case is spelled “when”
* Powerful matching syntax
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Given Example

e« given ($foo

when {/kaéc/g { $abc

= j_,

when (//Adef/ $def = 1, %
when (//Axyz/ $xyz = 1;

} default { $nothing = 1; }

* Four new keywords

- given

-~ when

~ default

— continue
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given

. given(EXPR)

* Assigns the result of EXPR to $_ within the
following block

e Similartodo { my $_ = EXPR; ... }
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when

. when (EXPR)

* Uses smart matching to compare $_ with
EXPR

 Equivalent to when ($_ ~~ EXPR)
* ~~ is the new smart match operator

* Compares two values and “does the right
thing”
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default

e default defines a block that is executed if no
when blocks match

* default block is optional
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continue

* continue keyword falls through to the next
when block

* Normal behaviour is to break out of given
block once the first when condition is
matched

« given($foo) 5
when (/X _ _
{say '$foo contains an x'; continue }
when (/y/% _
say '$foo contains a y' }
deTaul _
{ say '$foo contains no x or y' }

}
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Smart Matching

* ~~ is the new Smart Match operator

* Different kinds of matches

* Dependent on the types of the operands
* See “perldoc perlsyn” for the full details
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Smart Match Examples

« $foo0 ~~ $bar; # == or eq

e @Foo ~~ $bar; # array contains value
e %foo ~~ $bar; # hash key exists

« $foo0 ~~ qr{$bar}; # regex match

e @foo0 ~~ @bar; # arrays are 1dentical

e %foo ~~ %bar; # hash keys match
* Many more alternatives
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say()

* say() is a new alternative to print()

* Adds a new line at the end of each call
* say($foo); # print $foo, “\n”;

* Two characters shorter than print

* Less typing
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Lexical $

* $ is a package variable
* Always exists in main package

* Can lead to subtle bugs when not localised
correctly

* Can now use my $_ to create a lexically
scoped variable called $_
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State Variables

* Lexical variables disappear when their scope
is destroyed

« sub variables {
my $Xx;

say ++$x;

¥

variables() for 1 .. 3;
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State Variables

* State variables retain their value when their
scope is destroyed

« sub variables {
state $x;

say ++3X;

¥

variables() for 1 .. 3;
e [ike static variables in C
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Stacked File Tests

* People often think you can do this
e -f -w -x $file

* Previously you couldn't

* Now you can

* Equivalent to
¢ -X $file && -w _ && -T
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Regex Improvements

* Plenty of regular expression improvements
* Named capture buffers

* Possessive quantifiers

* Relative backreferences

* New escape sequences

 Many more
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Named Capture Buffers

* Variables $1, $2, etc change if the regex is
altered

* Named captures retain their names
* (?<name> ... ) to define
* Use new %+ hash to access them
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Named Capture Example

« while §<DATA>)
1f ( (?<header>[\w\s}
\s+(?<value>.+)/x
print "$+ header{ - > "
print "$+{value}\n";
) h
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Possessive Quantifiers

o 7+ T+ ++

* Grab as much as they can

* Never give it back

* Finer control over backtracking
« 'aaaa’' =~ /at+a/

* Never matches
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Relative Backreferences

* \g{N}

e More powerful version of \1, \2, etc
 \g{1} is the same as \1

 \g{-1} is the last capture buffer

* \g{-2} is the one before that
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New Escape Sequences

* \h — Horizontal white space
e \V — Vertical white space
e Also \H and \V

UKUUG
26" February 2009




Accessing New Features

 Some new features would break backwards
compatibility

* They are therefore turned off by default
e Turn them on with the feature pragma
e use feature 'say';

e use feature 'switch';

e use feature 'state';

e use feature ':5.10';
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Implicit Loading

* Two ways to automatically turn on 5.10
features

* Require a high enough version of Perl
e Use 5.10.0; # Or higher

* -E command line option

e perl -e 'say “hello”’

e perl -E 'say “hello”’

UKUUG
26" February 2009




UKUUG
26" February 2009

Open Source Consultaney, Development & Training



Dates & Times

 Dozens of date/time modules on CPAN

* Date::Manip is almost never what you want

* Date::Calc, Date::Parse, Class::Date,
Date::Simple, etc

* Which one do you choose?
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Perl DateTime Project

* http://datetime.perl.org/

* "The DateTime family of modules present a

unified way to handle dates and times in
Perl"

* "unified" is good

* Dozens of modules that work together in a
consistent fashion
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Using DateTime

e Use DateTime;
my $dt = DateTime->now;
say $dt;
# 2009-02-26T11:06:07
say $dt->ymd;
# 2009-02-26
say $dt->hms;
# 11:08:16
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Using DateTime

e Use DateTime;

my $dt = DateTime->new(year => 2009,
month => 2,
day => 26);

say $dt->ymd('/"');

# 2009/02/26

say $dt->month; # 2

say $dt->month_name; # February
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Arithmetic

* A DateTime object is a point in time
* For date arithmetic you need a duration
* Number of years, weeks, days, etc
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Arithmetic

e Use DateTime;

my $dt = DateTime->new(year => 2009,
month => 2,
day => 26);

my $two_weeks =

DateTime: :Duration->new(weeks => 2);

$dt += $two_weeks;

say $dt;

# 2009-03-12T00:00:00
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Formatting Output

e Use DateTime;
my $dt = DateTime->new(year => 2009,
month => 2,
day => 26);
say $dt->strftime('%A, %d %B %Y');
# Tuesday, 26 February 2009

* Control input format with
DateTime::Format::Strptime
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Parsing & Formatting

* Ready made parsers and formatters for
popular date and time formats

e DateTime::Format::HTTP
* DateTime::Format::MySQL
e DateTime::Format::Excel

* DateTime::Format::Baby
=~ the big hand is on...
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Alternative Calendars

* Handling non-standard calendars
 DateTime::Calendar::Julian
 DateTime::Calendar::Hebrew

* DateTime::Calendar::Mayan
 DateTime::Fiction::JRRTolkien::Shire

UKUUG
26" February 2009




Calendar Examples

« use DateTime: :Calendar: :Mayan;
my $dt = DateTime::Calendar::Mayan->now;
say $dt->date; # 12.19.16.1.15

e use DateTime: :Fiction::JRRTolkien: :Shire

my $dt =
DateTlme :Fiction: :JRRTolkien: :Shire->now;

saﬁ $dt->on_date;
ersday 24 Solmath 7473
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Testing

* Never program without a safety net

* Does your code do what it is supposed to
do?

* Will your code continue to do what it is
supposed to do?

 Write unit tests
e Run those tests all the time
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When to Run Tests

* As often as possible

* Before you add a feature

* After you have added a feature
* Before checking in code

* Before releasing code

* Constantly, automatically
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Testing In Perl

* Perl makes it easy to write test suites

* A lot of work in this area over the last eight
years

* Test::Simple and Test::More included in
Perl distribution

* Many more testing modules on CPAN
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Simple Test Program

e Use Test::More tests => 4;
BEGIN { use_ok('My::0Object'); }

ok(my $obj = My::0bject->new);
isa_ok($obj, 'My::0bject');
$obj->set_foo('Foo');
is($obj->get_foo, 'Foo');

UKUUG
26" February 2009




Simple Test Output

« $ prove -v test.t
test....
1..4 |
ok 1 - use My::0bject;
oK 2 . . .
ok 3 - The object 1sa My::0bject
oK 4
ok

All tests successful.

Files=1, Tests 4, 0 wallclock secs é
0.02 usr .00 sys + .05 cusr .0
CSYyS = 07 CPU¥

Result: PASS
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Adding Test Names

e Use Test::More tests => 4;
BEGIN { use_ok('My::0bject'); }

ok(my $obj = My::0bject->new,
'Got an object');
isa_ok($obj, 'My::0bject');
$obj->set_foo('Foo');
is($obj->get_foo, 'Foo',
'The foo 1s "Foo"');
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Output With Names

« $ prove -v test2.t
test2....
1..4
ok 1 - use My::0bject;
ok 2 - got an ob ect
ok 3 - The object 1sa My::0bject
ok 4 - The foo 1is "Foo"
ok

All tests successful.

Files=1, Tests 4, 0 wallclock secs é
0.02 usr .00 sys + .05 cusr .0
CSYyS = 07 CPU¥

Result: PASS

UKUUG
26" February 2009




Using prove

* prove is a command line tool for running
tests

* Runs given tests using Test::Harness
* Comes with the Perl distribution

* Command line options
~ -v verbose output

— -T recurse
- -s shuffle tests
~ Many more
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Test Anything Protocol

* Perl tests have been spitting out “ok 1” and
not “ok 2” for years

e Now this ad-hoc format has a definition
and a name

* The Test Anything Protocol (TAP)

* See Test::Harness::TAP (documentation
module) and TAP::Parser
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TAP Output

* More lE)()ssibilities for test output
— TAP::Harness::Color

~ Test:: TAP::HTMLMatrix
* Make sense of your test results

UKUUG
26" February 2009




More Testing Modules

* Dozens of testing modules on CPAN

* Some of my favourites

* Test::File

e Test::Exception, Test::Warn

* Test::Differences

* Test:: XML (includes Test:: XML::XPath)
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Writing Test Modules

* These test modules all work together
* Built using Test::Builder

e Ensures that test modules all use the same
framework

* Use it as the basis of your own Test::*
modules

e Who tests the testers?

* Test your Test::Builder test modules with
Test::Builder::Tester
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Mocking Objects

e Sometimes it's hard to test external interfaces
e Fake them

* Test::MockObject pretends to be other
objects

* Gives you complete control over what they
return
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Testing Reactors

* You're writing code that monitors a nuclear
reactor

* It's important that your code reacts correctly
when the reactor overheats

* You don't have a reactor in the test
environment
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Testing Reactors

* Even if you did, you wouldn't want to make
it overheat every time you run the tests

* Especially if you're not 100% sure of your
code

* Or if you're running unattended smoke tests
* Fake it with a mock object
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My::Monitor Spec

* If the temperature of a reactor is over 100
then try to cool it down

* If you have tried cooling a reactor down 5
times and the temperature is still over 100
then return an error
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My::Monitor Code

« package My::Monitor;
sub new { _
my $class = shift;
my $self = { tries => 0 };

return bless $self, $class;
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My::Monitor Code

« sub check {
my $self = shift;
my $reactor = shift;

my $temp = $reactor->temperature;

if ($temp > 1001
$reactor >cooldown;
++$self->{tries};
if ($self >{tr1es} > 5) {
return;

return 1,;
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My::Monitor Code

. } else { _
$Self->itr1es} = 0;
return 1,;

}}
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Mock Reactor

* Create a mock reactor object that acts
exactly how we want it to

* Reactor object has two interesting methods
* temperature - returns the current temperature

* cooldown - cools reactor and returns success
or failure
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monitor.t

e Use Test::More tests => 10;
use Test::MockObject->new;
# Standard tests
BEGIN { use_ok('My::Monitor'); }

ok(my $mon = MM::Monitor->new);
isa_ok($mon, 'My::Monitor');
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monitor.t

« # Create Mock Reactor Object

my $t = 10; _
my $reactor = Test::MockObject;

$reactor->set_bound('temperature',
\$t);

$reactor->set_true('cooldown');
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monitor.t

« # Test reactor
ok ($mon->check($reactor));
$t = 120;
ok($mon->check($reactor)) for 1 .. 5;

ok (!$mon->check($reactor));
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How Good Are Your Tests?

. How?much of your code is exercised by your
tests”

* Devel::Cover can help you to find out
* Deep internal magic

* Draws pretty charts

- HARNESS PERL SWITCHES=
-MDevel: :Cover make test

- cover
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Devel::Cover Output

Coverage Summary - Mozilla Firefox
Fle Edit View Go Bookmarks Tools Help delicious

E@-5-0 0 D F w E hitp: ffdave org.uk/code/Calendar-Simple/cover/ |:| @ Go |[CL

ome/dave/sro/Calendar-Simple/cover_db

[ file | stmt |bran | cond| sub | pod |time total
bliblib/Calendar/Simple.pm 100.0| 26.7 75.0100.0(100.0/100.0 85.2
Total 100.0| 926.7 75.0100.01100.0(100.0 352

Done

N
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Devel::Cover Output

hd Condition Coverage: blib/lib/Calendar/Simple.pm - Mozilla Firefox - || B |
Fle Edit View Go Bookmarks Toocls Help delicious
E@--85 0 & f H hittp:fidave org ukicodefCalendar-Simple/cover/blib-lib-Cale |:| @ Go |[CL
[4]
File:|blib/ib/CalendarSimple.pm
Coverage: 75.0%
line | % condition
TB 100 l E m Bymar < 1970 and not #dt
o X o
110 0 =]
1] 1 ]
79 [100/A|B |deg| *™" * ' = 7 1
oo aq
ol 1 1
11X 1
80 |100/A !B | dec $atart_day < 0 ar $start day = 6
go o
al 1 1
: . . . [¥]
[ [iiv000 [M
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Devel::Cover Output

b Condition Coverage: blib/lib/Calendar/Simple.pm - Mozilla Firefox -| B %
Fle Edt View Go Bookmarks Tools Help delicious
@ §' t"""'._ " hitp: fidave org uk/code/Calendar-Simple/coverblib-lib-Cale E @ Go [@,
B =]
0o Q
a1 1
1| X 1
162 a A E m fparama('mon®] || $now[D] + 1
oo a
01 1
1| X 1
163| 33lA B |dec $parama( ‘year'] || $new[1] + 1900
ojo o ]
o1 1
1] X 1
184 100l A | dee gparama('bagin'} || 1
0 aQ
1 1
165 B?A B m fparamo(‘end”] || _dayoi{fmon, fyear)
o o Q
Q1 1
1| X 1 Il
w
Done | @ |1 s0.00 [
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Alternative Test Paradigms

* Not everyone likes the Perl testing
framework

e Other frameworks are available

e Test::Class

~ xUnit style framework
* Test::FIT

- Framework for Interactive Testing
~ http://fit.c2.com
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More Information

* Perl Testing: A Developer's Notebook (Ian
Langworth & chromatic)

* perldoc Test::Tutorial ot

» perldoc Test::Simple ]
* perldoc Test::More e s
* perldoc Test::Builder

* etc...
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Benchmarking

* Ensure that your program is fast enough
* But how fast is fast enough?

* premature optimization is the root of all
evil
~ Donald Knuth
- paraphrasing Tony Hoare

* Don't optimise until you know what to
optimise
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Benchmark.pm

* Standard Perl module for benchmarking
* Simple usage
e Use Benchmark;

my %methods = (
methodl => sub { ... },
method2 => sub { ... },

)/
timethese(10_000, \%methods);

 Times 10,000 iterations of each method
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Benchmark.pm Output

« Benchmark: timing 10000 iterations of
methodl, method2...

methodl: 6 wallclock secs \

( 2.12 usr + 3.47 sys = 5,59 CPU) \
@ 1788.91/s (n=10000)

method2: 3 wallclock secs \

( .85 usr + 1.70 sys = 2.55 CPU) \
@ 3921.57/s (n=10000)
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Timed Benchmarks

» Passing timethese a positive number
runs each piece of code a certain number of
times

e Passing timethese a negative number

runs each piece of code for a certain
number of seconds
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Timed Benchmarks

e Use Benchmark;

my %methods = (
methodl => sub { ... },
method2 => sub { ... },

),

# Run for 10,000(!) seconds
timethese(-10_000, \%methods);
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Comparing Performance

» Use cmpthese to get a tabular output

* Optional export
e USEe Benchmark 'cmpthese';

my %methods = (
methodl => sub { ... },
method2 => sub { ... },

)
cmpthese(10_000, \%methods);
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cmpthese Output

. Rate methodl method2
methodl 2831802/s - - -61%
method2 7208959/s 155% - -

e method2 is 61% slower than method1

* Can also pass negative number to
cmpthese
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Benchmarking is Hard

* Very easy to produce lots of numbers

e Harder to ensure that the numbers are
meaningful

* Compare code fragments that do the same
thing
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Bad Benchmarking

« use Benchmark gw{ timethese };
timethese( 1_000, {
Ordinary => sub {
my @results = sort { -M $a <=> -M $b }
glob "/bin/*";

¥
Schwartzian => sub {
map $_->[0],
sort { $a->[1] <=> $b->[1] }
map [$_, -M], glob "/bin/*";
¥
3)i
UKUUG
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What to Benchmark

* Profile your code
* See which parts it is worth working on

* Look for code that
~ Takes a long time to run, or

~ Is called many times, or
- Both
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Devel::DProf

* Devel::DProf is the standard Perl profiling
tool

 Included with Perl distribution

* Uses Perl debugger hooks
« perl -d:DProf your_program

 Produces a data file called tmon.out

* Command line program dprofpp to view
results
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Sample Output

e $ perl -d:DProf ./invoice.pl 244

$ dprof _
Total Elapsed Time 1.173152 Seconds
0.963152 Seconds

User+System Time
%Time ExclSec CumulS #Calls sec/call Csec/c Name

Exclusive Times

6.02 0.058 0.067 482 0.0001 0.0001 Params::Validate:: validate

5.09 0.049 0.114 7 0.0070 0.0163 Class::DBI: Loader ¥sql : BEGIN
4.15 0.040 0.050 10 0.0040 0.0050 Template::Parser::BEG

4.15 0.040 0.166 7 0.0057 0.0237 DateTime::Locale: :BEGIN

4.05 0.039 0.094 43 0.0009 0.0022 base::import _

3.74 0.036 0.094 449 0.0001 0.0002 DateTime::Locale::_register

3.11 0.030 0.280 4 0.0074 0.0700 DateTlme::Format::MysgL::BEGIN
2.91 0.028 0.028 170 0.0002 0.0002 Lingua::EN::Inflect::_PL_noun

2.70  0.026 0.040 1 0.0262 0.0401 Template::Parser::_parse

2.49 0.024 0.024 1113 0.0000 0.0000 Class::Data::Inherltable::__ANON__
2.08 0.020 0.020 12 0.0017 0.0017 DBD::mysqgl::db::_login

2.08 0.020 0.020 4 0.0050 0.0050 Template::Stash:TBEGIN

2.08 0.020 0.099 9 0.0022 0.0110 Template: Conflg :load

2.08 0.020 0.067 9 0.0022 0.0074 Template::BEGIN

2.08 0.020 0.039 4 0.0049 0.0097 Lingua::EN::Inflect::Number: :BEGIN
UKUUG
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Devel::NYTProf

* New profiling module

* Based on work from the New York Times
* Enhanced by Tim Bunce

* Pretty HITML output

- “borrowed” from Devel::Cover
 Far more flexible

* Far more powertul
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Using NY TProf

e Similar to Devel::DProft
« $ perl -d:NYTProf ./invoice.pl 244

* Writes nytprof.out
« $ nytprofhtml

* Or
« $ nytprofcsv
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Conclusions

* Don't optimise until you know you need to
optimise

* Don't optimise until you know what to
optimise

* Use profiling to find out what is worth
optimising

* Use benchmarking to compare different
solutions
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More Information

* perldoc Benchmark
* perldoc Devel::DProf

* perldoc Devel::NYTProf
* Chapters 5 and 6 of Mastering Perl
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ORM

* Mapping database relations into objects
* Tables (relations) map onto classes

* Rows (tuples) map onto objects

* Columns (attributes) map onto attributes
* Don't write SQL
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SQL Is Tedious

* Select the id and name from this table
e Select all the details of this row

* Select something about related tables

* Update this row with these values

* Insert a new record with these values

* Delete this record
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Replacing SQL

e Instead of

« SELECT *
FROM my_table
WHERE my_id = 10

* and then dealing with the
prepare/execute/fetch code
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Replacing SQL

* We can write
e Use My::0bject;

# warning! not a real orm
my $obj = My::0bject->retrieve(10)

* Or something similar
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Writing An ORM Layer

* Not actually that hard to do yourself
e Fach class needs an associated table

 Fach class needs a list of columns

* Create simple SQL for basic CRUD
operations

 Don't do that
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Perl ORM Options

* Plenty of choices on CPAN
* Tangram

* SPOPS (Simple Perl Object Persistence
with Security)

e Alzabo
e Class::DBI
e DBIx::Class

— The current favourite
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DBIx::Class

* Standing on the shoulders of giants
* Learning from problems in Class::DBI

 More flexible
* More powertful

UKUUG
26" February 2009




DBIx::Class Example

* Modeling a CD collection
* Three tables

* artist (artistid, name)

* cd (cdid, artist, title)

* track (trackid, cd, title)
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Main Schema

e Define main schema class

 DB/Main.pm

« package DB::Main;
use base gw/DBIXx::Class::Schema/;

_ PACKAGE__ ->load_classes();

1;
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Object Classes

 DB/Main/Artist.pm

« package DB::Malin::Artist;
use base qw/DBIXx::Class/;
__ PACKAGE__ ->1oad_components(gqw/PK: :Auto
Core/);
_ PACKAGE__->table('artist');
_ PACKAGE__ ->add_columns(gw/ artistid name
/) ;
_ PACKAGE__ ->set_primary_key('artistid');
_ PACKAGE__ ->has_many(cds =>

'DB::Main::Cd');

1;
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Object Classes

* DB/Main/CD.pm

« package DB::Main: :CD;
use base qw/DBIXx::Class/;

__ PACKAGE__ ->1oad_components(gqw/PK: :Auto
Core/);

_ PACKAGE__ ->table('cd');
_ PACKAGE__ ->add_columns(gw/ cdid artist
title year /);
_ PACKAGE__ ->set_primary_key('cdid');
_ PACKAGE__ ->belongs_to(artist =>

'DB: :Main: :Artist');
1,
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Inserting Artists

« my $schema =
DB: :Main->connect($dbi_str);

my @artists = ('The Beta Band',
'Beth Orton');

my $art_rs = $schema->resultset('Artist');

foreach (@artists) {
$art_rs->create({ name => $_ });

}
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Inserting CDs

e Hash of Artists and CDs

e my %cds = ( 'The Three EPs' =>
'The Beta Band',
'Trailer Park' =>
'Beth Orton');
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Inserting CDs

 Find each artist and insert CD

« foreach (keys $cds) {

my ($artist) = S$art_rs->search(
{ name => $cds{$_} }
)

$artist->add_to_cds({
title => $_,

1)
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Retrieving Data

* Get CDs by artist

e my ($artist) = $art_rs->search({
name => 'Beth Orton',

1)

foreach ($artist->cds) {
say $_->title;
h
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Searching for Data

* Search conditions can be more complex

e Alternatives

- $rs—>search(£year => 20061
year => 20071);

e [ike
- $rs->search({name_=>
{ "like', 'Dav%' 1}}):
e Combinations

- $rs->search({forename =>
'like', 'Dav%'
surname => 'Cross' });
UKUUG P
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Don't Repeat Yourself

* There's a problem with this approach
* Information is repeated

* Columns and relationships defined in the
database schema

* Columns and relationships defined in class
definitions
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Repeated Information

« CREATE TABLE artist (
artistid INTEGER PRIMARY KEY,
name TEXT NOT NULL

)
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Repeated Information

« package DB::Main::Artist;

use base qw/DBIXx::Class/;

_ PACKAGE__->
load_components(qw/PK: :Auto Core/);

_ PACKAGE__->table('artist');

_ PACKAGE__->

add_columns(gw/ artistid name /);

_ PACKAGE__>
set_primary_key('artistid');

_ PACKAGE__->has_many('cds' =>
'DB: :Main::Cd"');
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Database Metadata

* Some people don't put enough metadata in
their databases

* Just tables and columns
* No relationships. No constraints

* You may as well make each column
VARCHAR(255)
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Database Metadata

* Describe your data in your database
* It's what your database is for

* It's what your database does best
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No Metadata (Excuse 1)

* "This is the only application that will ever
access this database"

* Bollocks
* All data will be shared eventually

* People will update your database using
other applications

* Can you guarantee that someone won't use
mysql to update your database?
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No Metadata (Excuse 2)

* "Our database doesn't support those
features"

 Bollocks

* MySQL 3.x is not a database

~ It's a set of data files with a vaguely SQL-like
query syntax

* MySQL 4.x is a lot better
* MySQL 5.x is most of the way there

* Don't be constrained by using inferior tools
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DBIC::Schema::Loader

* Creates classes by querying your database
metadata

* No more repeated data

* We are now DRY

* Schema definitions in one place
* But...

* Performance problems
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Performance Problems

* You don't really want to generate all your
class definitions each time your program is
run

* Need to generate the classes in advance
e dump_to_dir method

* Regenerate classes each time schema
changes
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Alternative Approach

* Need one canonical definition of the data
tables

* Doesn't need to be SQL DDL
* Could be in Perl code

* Write DBIx::Class definitions
* Generate DDL from those

* Harder approach
~ Might need to generate ALTER TABLE
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Conclusions

* ORMisa brid%e between relational objects
and program objects

* Avoid writing SQL in common cases

* DBIXx::Class is the currently fashionable
module

* Lots of plugins

* Caveat: ORM may be overkill for simple
programs
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M

ore Information

Manual pages (on CPAN)

DB
DB
DB

x::C]
x::C]

x::C]

ass
ass::Manual::*
ass::Schema::I.oader

Mailing .
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ist (Google for it)
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Moose

* A complete modern object system for Perl 5

* Based on experiments with Perl 6 object
model

* Built on top of Class::MOP

~ MOP - Meta Object Protocol

~ Set of abstractions for components of an object
system

- Classes, Objects, Methods, Attributes
* An example might help

UKUUG
26" February 2009




Moose Example

« package Point;
use Moose;

has 'x' => (1sa => 'Int!,
1s => 'ro'),
has 'y' => (1sa => 'Int',
1s => 'rw');

sub clear {
my $self = shlft
$self >{ x%
$self->y(0);

}

UKUUG
26" February 2009




Understanding Moose

* There's a lot going on here
e use Moose
— Loads Moose environment

— Makes our class a subclass of Moose::Object
— Turns on strict and warnings
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Creating Attributes

« has 'x' => (isa => 'Int',
1s => 'ro')
~ Creates an attribute called 'x'
- Constrainted to be an integer
- Read-only accessor
e has 'y' => (1sa => 'Int',
1s => 'rw')
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Defining Methods

e sub clear {
my $self =
$self->{x}
$self->y(0);

ft;

shi
— @,

}
* Standard method syntax

* Uses generated method to set y

 Direct hash access for x
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Subclassing

« package Point3D;
use Moose;

extends 'Point';
has 'z' => (1isa => 'Int');
after 'clear' => sub {

my $self = shift;

$self->{z} = 0;
T
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Subclasses

« extends 'Point'

— Similar to use base

— Overwrites @ISA instead of appending
« has 'z' => (isa = 'Int')

— Adds new attribute 'z’

~ No accessor function - private attribute
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Extending Methods

« after 'clear' => sub {
my $self = shift;
$self->{z} = 0O;
¥
* New clear method for subclass
* Called after method for superclass

* Cleaner than $self->SUPER::clear()
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Creating Objects

* Moose classes are used just like any other

Perl class
« $point = Point->new(x => 1, y => 2);
e $p3d = Point3D->new(x => 1,

y => 2,
z => 3);
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More About Attributes

e Use the has keyword to define your class's
attributes

« has 'first_name' => ( 1s => 'rw' );
e Use is to define rw or ro

* Omitting is gives an attribute with no
accessors
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Getting & Setting

* By default each attribute creates a method of
the same name.

* Used for both getting and setting the
attribute

« $dave->first_name('Dave');
e say $dave->first_name;
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Change Accessor Name

* Change accessor names using reader and
writer
« has 'name' => (
1s => 'rw',
reader => 'get_name’',
writer => 'set_name',

)
 See also MooseX::FollowPBP
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Required Attributes

* By default Moose class attributes are
optional

e Change this with required
« has 'name' => (
1s => 'ro',
required => 1,

) ;
* Forces constructor to expect a name
* Although that name could be undet
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Attribute Defaults

* Set a default value for an attribute with
default

« has 'size' =>
1S => 'rw'
default => '"medium’

),
e Can use a subroutine reference

« has 'size' =>
is => 'rw'
default => \&rand size,

);
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More Attribute Properties

e lazy
~ Only populate attribute when queried
e trigger
— Subroutine called after the attribute is set
e 1Sa
— Set the type of an attribute
* Many more
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More Moose

* Many more options

* Support for concepts like delegation and
roles

* Powerful plugin support
- MooseX::*

* Lots of work going on in this area

UKUUG
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Templating

* Many people use templates to produce web
pages

* Advantages are well known

* Standard look and feel (static/dynamic)

* Reusable components

* Separation of code logic from display logic

* Different skill-sets (HTML vs Perl)
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Non-Web Templating

* The same advantages apply to non-web
areas

* Reports
e Business documents
* Configuration files

* Anywhere you produce output
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DIY Templating

* Must be easy - so many people do it
* See perlfaq4

* How can I expand variables in text strings?
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DIY Templating

e $text =
'this has a $foo in it and a $bar';

%user_defs = (
foo => 23,
bar => 19,

)
$text =~ s/\$(\w+)/SBuser_defs{$1}/qg;
* Don't do that
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Templating Options

* Dozens of template modules on CPAN

i

* Text::Template, HIML::Template, Mason,
Template Toolkit

* Many, many more

* QQuestions to consider
- HTML only?

- Template language

* I choose the Template Toolkit
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Template Toolkit

* http://tt2.org/

* Very powerful

* Both web and non-web

* Simple template language

* Plugins give access to much of CPAN

* Can use Perl code if you want
- But don't do that
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Good Book Too!

Perl Template
Toolkit

O'REILLY"
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The Template Equation

* Data + Template = Output

* Data + Alternative Template = Alternative
Output

e Different views of the same data

* Only the template changes
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Simple TT Example

e use Template;
use My::0bject;
my ($id, $format) = @ARGV;

$format ||= 'html';
my $obj = My::0bject->new($id)
or die;

my $tt = Template->new;
$tt->process("$format.tt",
{ obj => $obj },
"$id.$format")
or die $tt->error;
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html. tt

e <html>
<head> . .
<title>[% obj.name %]</title>
</head>
<body> _
<h1>[% obj.name %]<hl>
<p><1img src="“[% obj.img %]" /><br />
[% obj.desc %][</p>
<ul>
[% FOREACH child IN obj.children -%]
<li>[% child.name %]</1l1>
[% END %]
</body>
</html>
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lext.it

+ [% obj.name | upper %]

Imag % obj.img %]
[ % obJ gesc %

(% FOREACH child IN obj.children -%]
% E&% ghlld name %]
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Adding New Formats

* No new code required
* Just add new output template

* Perl programmer need not be involved
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Equation Revisited

* Data + Template = Output
— Template Toolkit

* Template + Output = Data
— Template::Extract

* Data + Output = Template
- Template::Generate
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MVC Frameworks

* MVC frameworks are a popular way to write
applications

— Particularly web applications
* Model
- Data storage & data access
* View
— Data presentation layer
* Controller
~ Business logic to glue it all together
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MVC Examples

* Ruby on Rails

* Django (Python)

* Struts (Java)

* CakePHP

* Many examples in most languages
* Perl has many options
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MVC In Perl

* Maypole
- The original Perl MVC framework
* CGI::Application
- Simple MVC for CGI programming
o Jifty
~ Developed and used by Best Practical
* Catalyst
— Currently the popular choice
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Catalyst

* MVC framework in Perl

* Building on other heavily-used tools
* Model uses DBIx::Class

* View uses Template Toolkit

* These are just defaults

* Can use anything you want
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Simple Catalyst App

* Assume we already have model
— CD database from DBIx::Class section
* Use catalyst.pl to create project

» $ catalyst.pl CD
created "CD" _
created "CD/script”
created "CD/11ib"
created "CD/root"

many more
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What Just Happened?

* Catalyst just generated a lot of useful stuff
for us

* Test web servers

- Standalone and FastCGI
* Configuration files
e Test stubs

* Helpers for creating models, views and
controllers

UKUUG
26" February 2009




A Working Application

* We already have a working application

« $ CD/script/cd_server.pl
. lots of output
info] CD powered by Catalyst 5.7015
Ou can_connect to your server at
http://localhost:3000

* Of course, it doesn't do much yet
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Simple Catalyst App

CD on Catalyst 5.7015 - Mozilla Firefox

Elle Edit View History Delicious Bookmarks Tools Help
%« v & @ Bl B8 | |nttpsiocalhost:3000/ B v | |G @,

CD on catalyst 5.7015

Welcome to the world of Catalyst. This MVC Pr—a"

framework will make web development something (
you had never expected it to be: Fun, rewarding,

and quick. f— \

?
What to do now? e

That really depends on what you want to do. We
do, however, provide you with a few starting

points. catalyst
If you want to jump right into web development Web Framework
with Catalyst you might want to start with a

tutorial.

perldoc Catalyst::Manual::Tutorial

Afterwards you can go on to check out a more complete look at our
features.

perldoc Catalyst::Manual::Intro

What to do next?

Next it's time to write an actual application. Use the helper scripts to
generate controllers, models, and views; they can save you a lot of work.

script/cd_create.pl -help

3¢ Find: | | [] Match case
Done i WA ™
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Next Steps

* Use various helper programs to create
models and views for your application

* Write controller code to tie it all together

* Many plugins to handle various parts of the
process

— Authentication

- URL resolution
~ Session handling
- etc...
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Create a View

e $ script/cd_create.pl view Default TT _
exists "/home/dave/training/cdlib/CD/script/..
lib/CD/View" o _ _
t§x1sts "/home/dave/training/cdlib/CD/script/..
created "/home/dave/training/cdlib/CD/script/..
lib/CD/View/Default.pm" _ _
created "/home/dave/training/cdlib/CD/script/..
t/view_Default.t"

NN N N
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Remove Default Message

* In lib/CD/Controller/Root.pm

« sub index :Path :Ar s(Oé {
my ( $self, $c ? = @_;

# Hello World
$c->response_body($c->welcome_message);

}
* Remove response_body line

e Default behaviour is to render index.tt
* Need to create that
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Index.tt

e root/index.tt

e <html>
<head> _
<title>CDs</title>
</head>
<bod¥
>

[% FOREACH cd IN g ... 10 1 %]
<1i>CD [% cd %]</1l1>
[% END %]
</ul>
</body>
</html>
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New Front Page

) CDs - Mozilla Firefox
Eile Edit Wiew History Delicious Bookmarks Tools Help

& v @ Bl @ |-< httpyjlocalhost:3000/ |v| [Clv | @,

CD1
CDh 2
CDh3
Ch4
CD5
CD 6
CD7
CD &8
CDh9
CD 10

¥ Find: | . [l Match case
UKUUG Done
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Adding Data

* Of course that's hard-coded data

* Need to add a model class

* And then more views

* And some controllers

* There's a lot to do

* [ recommend working through a tutorial
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Easier Catalyst

* A lot of web applications do similar things
* Given a database

* Produce screens to edit the data

* Surely most of this can be automated

* It's called
CatalystX::ListFramework::Builder

* (Demo)
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CatX::LFBuilder

* Does a lot of work

* On the fly

* For every request

* No security on table updates

* So it's not right for every project
* Very impressive though
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Conclusions

* There's a lot to bear in mind when writing a
web app

* Using the right framework can help
* Catalyst is the most popular Perl framework
* As powerful as any other framework
~ In any language
* Lots of work still going on
* Large team, active development
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Further Information

* Some suggestions for places to go for
further information

* Web sites

* Books

* Magazines
* Mailing lists
* Conferences
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London Perl Mongers

* http://london.pm.org/
* Mailing list

. Re%ular meetings
— Both social and technical

* London Perl Workshop

* Many other local Perl Monger groups
~ http://pm.org/
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Web Sites

* use Perl; .
— Perl news site

~ Also journals

* perl.com
~ O'Rellly run site

— High quality articles
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Web Sites

* Perl Monks
~ Best web site for Perl questions

~ Many Perl experts

 The Perl director
~ http://perl.org

— Lists of many Perl-related sites
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Books

* Some recent Perl books
* Perl Best Practices - Damian Conway

* Advanced Perl Programming - Simon
Cozens

* Perl Hacks - chromatic, Conway & Poe

* Intermediate Perl - Schwartz, foy &
Phoenix

* Mastering Perl - brian d foy
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More Books

* Higher Order Perl - Mark-Jason Dominus
* Minimal Perl - Tim Maher

* Pro Perl Debugging - Richard Foley & Joe
McMahon

e Perl & LWP - Sean M Burke

~ Updated online edition
~ http://lwp.interglacial.com/

* See http://books.perl.org/
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Magazines

* The Perl Review
- http://www.theperlreview.com/
* Randal's monthly columns

~ Linux Magazine
~ SysAdmin

UKUUG
26" February 2009




Mailing Lists

* Many mailing lists devoted to Perl topics
* See http://lists.cpan.org/
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Conferences

e The Open Source Convention
— San Diego 20-24 July 2009

* YAPC
~ Pittsburgh 22-24 June 2009

- Lisbon 3-5 August 2009

— Brazil, Asia, Israel, Australia
* One-Day Perl Workshops
* See http://yapc.org/
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That's all folks

* Any questions?
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