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What We Will Cover

* What is Perl?

* Creating and running a Perl program
* Input and Output

* Perl variables

* Operators and Functions

e Conditional Constructs
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What We Will Cover

* Subroutines

* Regular Expressions

* References

* Smart Matching

* Finding and using Modules

 Further Information
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Schedule

* 09:45 — Begin

e 11:15 — Coftfee break
* 13:00 — Lunch

* 14:00 — Begin

e 15:30 — Coftee break
e 17:00 — End
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Resources

* Slides available on-line
~ http://mag-sol.com/train/public/2009-02/begin
* Also see Slideshare
~ http://www.slideshare.net/davorg/slideshows
* Mailing List
~ http://lists.mag-sol.com/mailman/listinfo/beg2009
* Get Satisfaction
~ http://getsatisfaction.com/magnum
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Perl's Name

* Practical Extraction and Reporting
LLanguage
* Pathologically Eclectic Rubbish Lister

* "Perl" is the language
* "perl" is the compiler
* Never "PERL"
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Typical uses of Perl

* Text processing

* System administration tasks
* CGI and web programming
* Database interaction

* Other Internet programming
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Less typical uses of Perl

* Human Genome Project
*NASA
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What Is Perl Like?

* General purpose programming language

* Free (open source)
* Fast

* Flexible

* Secure

* Fun
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The Perl Philosophy

* There's more than one way to do it

* Three virtues of a programmer
- Laziness

~ Impatience
~ Hubris

* Share and enjoy!
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Creating a Perl Program

* Our first Perl program
print "Hello world\n'";

* Put this in a file called hello.pl
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Running a Perl Program

* Running a Perl program from the command
line

* $ perl hello.pl
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Running a Perl Program

* The "shebang" line (Unix, not Perl)
#1/usr/bin/perl

* Make program executable
$ chmod +x hello.pl

e Run from command line

$ ./hello.pl
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Perl Comments

* Add comments to your code
e Start with a hash (#)

e Continue to end of line

e # This 1s a hello world program
print "Hello, world!\n"; # print
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Command Line Options

* Many options to control execution of the
program
e For example, -w turns on warnings

e Use on command line
perl -w hello.pl

* Or on shebang line
#1/usr/bin/perl -w
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What Is a Variable?

* A place where we can store data

e A variable needs a name to

— retrieve the data stored in it

- put new data in it
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Variable Names

* Contain alphanumeric characters and
underscores

* User variable names may not start with
numbers

* Variable names are preceded by a
punctuation mark indicating the type of
data
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Types of Perl Variable

* Different types of variables start with a
different symbol

— Scalar variables start with $
~ Array variables start with @

— Hash variables start with %
* More on these types soon
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Declaring Variables

* You don't need to declare variables in Perl
* But it's a very good idea

- typos

~ scoping
* Using the strict pragma

use strict;
my $var,;
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Scalar Variables

* Store a single item of data

e my $name = "Arthur";
e my $whoami = 'Just Another Perl
Hacker';

« my $meaning_of_life = 42;
e my $number_less_than_1 = 0.000001;

e my $very_large_number = 3.27el7;
# 3.27 times 10 to the power of 17
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Type Conversions

* Perl converts between strings and numbers
whenever necessary

* Add int to a floating point number
my $sum = $meaning_of_life +
$number_less_than_1;

* Putting a number into a string
print "$name says, 'The meaning of
life 1is $sum. '\n";
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Quoting Strings

* Single quotes don't expand variables or
escape sequences
my $price = '$9.95';

* Double quotes do
my $invline =
"24 widgets @ $price each\n";

* Use a backslash to escape special

characters in double quoted strings
print "He said \"The price is \$300\"";
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Better Quotes

* This can look ugly
print "He said \"The price is \$300\"";

* This is a tidier alternative
print gq(He said "The price is \$300");

* Also works for single quotes
print g(He said "That's too expensive");
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Undefined Values

* A scalar variable that hasn't had data put into
it will contain the special value “undef”

* Test for it with “defined()” function
e« 1f (defined($my_var)) { ... }
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Array Variables

* Arrays contain an ordered list of scalar

values
e« my @fruit = ('apples', 'oranges',
'guavas', 'passionfruit',
'grapes’);
e my @magic_numbers = (23, 42, 69);
e my @random_scalars = ('mumble’', 123.45,

'dave cross',
-300, $name);
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Array Elements

* Accessing individual elements of an array

e print $fruits|[0O];
# prints "apples"

e Note: Indexes start from zero

e print $random_scalars[2];
# prints "dave cross"

* Note use of $ as individual element of an
array is a scalar
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Array Slices

* Returns a list of elements from an array
e print @fruits[0,2,4],;
# prints "apples'", "guavas',
# "grapes"
e print @fruits[1 .. 3];
# prints "oranges'", '"guavas',
# "passionfruit"
* Note use of @ as we are accessing more

than one element of the array
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Setting Array Values

e $array[4] = 'something';
$array[400] = 'something else';
* Also with slices
e @arrayl[4, 7 .. 9] = ('four', 'seven',
'eight', 'nine');
e @array[1l, 2] = @array[2, 1];

* Doesn't need to be an array!
- (3%, 3y) = (3y, $x);
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Array Size

* $#array is the index of the last element in
@array
e Therefore $#array + 1 isthe number of

elements
« $count = @array;

does the same thing and is easier to
understand
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Hash Variables

* Hashes implement “look-up tables” or
“dictionaries”

* Initialised with a list
%french = ('one', 'un', 'two', 'deux',
'three', 'trois');

* "fat comma" (=>) is easier to understand
%german = (one => 'ein',
two => 'zwel',
three => 'drei');

UKUUG
25™ February 2009

Open Source Consultaney, Development & Training



Accessing Hash Values

« $three = $french{three};
e print $german{two},

* As with arrays, notice the use of $ to
indicate that we're accessing a single value
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Hash Slices

* Just like array slices

e Returns a list of elements from a hash
print @french{'one', 'two', 'three'};
# prints "un", "deux" & "trois"

* Again, note use of @ as we are accessing
more than one value from the hash
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Setting Hash Values

« $hash{foo} = 'something';
« $hash{bar} = 'something else';

* Also with slices

e @hash{'foo', 'bar'} =
('something', 'else');

e @hash{'foo', 'bar'} =
@hash{'bar', 'foo'};
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More About Hashes

* Hashes are not sorted
* There is no equivalent to $#array
* print %hash is unhelpful

* We'll see ways round these restrictions later
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Special Perl Variables

* Perl has many special variables

* Many of them have punctuation marks as
names

 Others have names in ALL_CAPS

* They are documented in perlvar
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The Default Variable

* Many Perl operations either set $_ or use its
value if no other is given

e print; # prints the value of $_

* If a piece of Perl code seems to be missing
a variable, then it's probably using $_

* Think of “it” or “that” in English
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Using $

« while (<FILE>) {
1f (/regex/) {
print;
h
h

e Three uses of $
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A Special Array

¢« ARGV

* Contains your programs command line
arguments

e perl printargs.pl foo bar baz

e my $num = @ARGV,
print "$num arguments: @ARGV\n";
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A Special Hash

o« %ENV

e Contains the environment variables that
your script has access to.

* Keys are the variable names
Values are the... well... values!

e print $ENV{PATH};
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Input and Output

* Programs become more useful with input
and output

* We'll see more input and output methods
later in the day

* But here are some simple methods
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Output

* The easiest way to get data out ot a Perl
program is to use print

e print “Hello world\n”;
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Input

* The easiest way to get data into a Perl
program is to read from STDIN

e $input = <STDIN>;

e < ... >isthe “read from filehandle”
operator

* STDIN is the standard input filehandle
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A Complete Example

e #1/Uusr/bin/perl

rint 'wWhat 1s your name: ';
name = <STDIN>;
print “Hello $name”;
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Operators and Functions

* What are operators and functions?
* "Things" that do "stuff"
* Routines built into Perl to manipulate data

* Other languages have a strong distinction

between operators and functions
~ in Perl that distinction can be a bit blurred

* See perlop and perlfunc
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Arithmetic Operators

* Standard arithmetic operations
add (+), subtract (-), multiply (*), divide (/)

* Less standard operations
modulus (%), exponentiation (**)

« $speed = $distance / $time;
$vol = $length * $breadth * $height;
$area = $pi * ($radius ** 2);
$odd = $number % 2;
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Shortcut Operators

* Often need to do things like
$total = $total + $amount;

 Can be abbreviated to
$total += $amount;

 Even shorter
$x++; # same as $x += 1 or $x
$y--; # same as $y -= 1 or 3y

e Subtle difference between $x++ and ++$Xx

$x + 1
Sy - 1

UKUUG
25™ February 2009

Open Source Consultaney, Development & Training



String Operators

* Concaternation (.)
$name = $firstname . ' ' . $surname;

* Repetition (x)
$line = '-' x 80;
$police = 'hello ' x 3;

e Shortcut versions available
$page .= $line; # $page = $page . $line
$thing x= $i; # $thing = $thing x $1i
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File Test Operators

* Check various attributes of a file
-e $file does the file exist

-r $file is the file readable

-w $file is the file writeable

-d $file is the file a directory
-f $file is the file a normal file
-T $file is a text file

* -B $file is a binary file
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Functions

* Have longer names than operators
* Can take more arguments than operators
* Arguments follow the function name

* See perlfunc for a complete list of Perl's
built-in functions
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Function Return Values

* Functions can return scalars or lists (or
nothing)
« $age = 29.75;
$years = int($age);
e @list = ('a', 'random',
‘collection', 'of',
'words');

@sorted = sort(@list);
# a collection of random words
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String Functions

* length returns the length of a string
$len = length $a_string;

* uc and lc return upper and lower case

versions of a string

$string = 'MiXeD CaSe';

print "$string\n", uc $string, "\n",
lc $string;

e Seealsoucfirst and 1lcfirst
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More String Functions

* chop removes the last character from a

string and returns it
$word = 'word';
$letter = chop $word;

» chomp removes the last character only if it
is a newline and returns true or false
appropriately
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Substrings

* substr returns substrings from a string
$string = 'Hello world';
print substr($string, 0, 5);
# prints 'Hello'

* Unlike many other languages you can

assign to a substring

substr($string, 0, 5) = 'Greetings';
print $string;

# prints 'Greetings world'
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Numeric Functions

* abs returns the absolute value

* COS, sin, tan standard trigonometric
functions

* exp exponentiation using e
* log logarithm to base e
* rand returns a random number

* sgrt returns the square root
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Array Manipulation

* push adds a new element to the end of an

array
push @array, $value;

* pop removes and returns the last element in

an array
$value = pop @array;

e shift and unshift do the same for the
start of an array
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Array Manipulation

* sort returns a sorted list (it does not sort

the list in place)
@sorted = sort @array;

* sort does a lot more besides, see the docs
(perldoc -f sort)

* reverse returns a reversed list
@reverse = reverse @array;
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Arrays and Strings

* join takes an array and returns a string
@array = (1 .. 5);
$string = join ' ', @array;
# $string is '1 2 3 4 5

* split takes a string and converts it into an
array
$string = '1~2~3~4~5";
@array = split(/~/, $string);
# @array 1is (1, 2, 3, 4, 5)
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Hash Functions

* delete removes a key/value pair from a
hash

« exists tells you if an element exists in a
hash

 keys returns a list of all the keys in a hash

 values returns a list of all the values in a
hash
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File Operations

* open opens a file and associates it with a

filehandle
open(FILE, 'in.dat');

* You can then read the file with <FILE>
$1ine = <FILE>; # one line
@lines = <FILE>; # all lines

* Finally, close the file with close
close(FILE);
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Other File Functions

 read to read a fixed number of bytes into a

buffer
$bytes = read(FILE, $buffer, 1024),

* seek to move to a random position in a file
seek(FILE, 0, 0O);

* tell to get current file position
$where = tell FILE;

* truncate to truncate file to given size
truncate FILE, $where;
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Time Functions

e time returns the number of seconds since
Jan 1st 1970

$now = time;

e Jocaltime converts that into more usable

values

($sec, $min, $hour, $mday, $mon,
$year, $wday, $yday, $isdst) =
localtime($now);
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localtime Caveats

* $monisOto 11
* $year is years since 1900

* $wday is 0 (Sun) to 6 (Sat)
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localtime Shortcuts

e [t's common to use localtime on the
current time
e @time_bits = localtime(time);

e Call to time can be omitted
e @ti1me_bits = localtime;

* Use array slices
e ($d, $m, $y) = (localtime)[3 .. 5];
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Date & Time Formats

* You can get formatted dates by fiddling the
return values from localtime

* Easier to use strftime (from POSIX.pm)
e print strftime('%Y-%m-%d', localtime);

* Format followed by list of date/time values

e Format is POSIX standard

- Like UNIX date command
e print strftime ('%d %B %y', localtime);
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Conditional Constructs

e Conditional constructs allow us to choose
different routes of execution through the
program

* This makes for far more interesting
programs

* The unit of program execution is a block of
code

* Blocks are delimited with braces { ... }
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Conditional Constructs

* Conditional blocks are controlled by the
evaluation of an expression to see if it is
true or false

e But what is truth?

UKUUG
25™ February 2009




What Is Truth?

* In Perl it's easier to answer the question

"what is false?"
~ 0 (the number zero)

~ " (the empty string)
~ undef (an undefined value)
~ () (an empty list)

* Everything else is true
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Comparison Operators

* Compare two values in some way
~ are they equal
$x == Py or $x eq By
$x = $y or $x ne 3y

~ Is one greater than another
$x > $y or $x gt Py
$x >= Py or $x ge Py

- Also<(1t)and <= (le)
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Comparison Examples

e 62 > 42 # true

e 'Q0' == (3 * 2) - 6 # true

« 'apple' gt 'banana' # false

« 'apple' == 'banana' # true(!)
e 1 + == '3 bears' # true
el + 3 == '"three' # false
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Boolean Operators

e Combine two or more conditional
expressions into one

e« EXPR_ 1 and EXPR_2
true if both EXPR_1 and EXPR_2 are true

e EXPR 1 or EXPR 2
true if either EXPR 1 or EXPR 2 are true

e Alternative syntax && for and and | | for or
* Different precedence though
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Short-Circuit Operators

e EXPR 1 or EXPR_ 2
Only need to evaluate EXPR_2 if EXPR_1

evaluates as false

e We can use this to make code easier to

follow
open FILE, 'something.dat'

or die "Can't open file: $!";
e @ARGV == 2 or print $usage_msg;
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If

e if - our first conditional
. if (EXPR) { BLOCK }

* Only executes BLOCK if EXPR is true
if ($name eq 'Doctor') {
regenerate();

}
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If ... else ...

* if ... else ... - an extended if
if (EXPR) { BLOCK1 } else { BLOCK2}
* [f EXPR is true, execute BLOCK1,
otherwise execute BLOCK?2
e 1T ($name eq 'Doctor') {
regenerate();

} else {
die "Game over!\n";

}
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If ... elsif ... else ...

e if ... elsif ... else ... - even more control
if (EXPR1) { BLOCK1 }
elsif (EXPR2) { BLOCK2 }
else { BLOCK3 }

e [f EXPRI1 is true, execute BLOCK1
else if EXPR?2 is true, execute BLOCK?2
otherwise execute BLOCKS3
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If ... elsif ... else ...

* An example

i1f ($name eq 'Doctor') {
regenerate();

} elsif ($tardis_location

eq $here) {

escape();

} else {
die "Game over!\n";

}
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while

* while - repeat the same code
while (EXPR) { BLOCK }

* Repeat BLOCK while EXPR is true
while ($dalek_prisoners) {
print "Ex-ter-min-ate\n";
$dalek_prisoners--;

}
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until

* until - the opposite of while
until (EXPR) { BLOCK }

* Execute BLOCK until EXPR is true
until ($regenerations == 12) {
print "Regenerating\n";
regenerate();
$regenerations++;

}
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for

* for - more complex loops
for (INIT; EXPR; INCR) { BLOCK }

e Like C

* Execute INIT
If EXPR is false, exit loop, otherwise
execute BLOCK, execute INCR and retest
EXPR
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for

* An example
for ($1i = 1; $i <= 10; $i++) {
print "$1 squared 1is ",
$l * $l, Il\nll;
h

* Used surprisingly rarely
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foreach

* foreach - simpler looping over lists
foreach VAR (LIST) { BLOCK }

* For each element of LIST, set VAR to

equal the element and execute BLOCK
« foreach $1 (1 .. 10) {
print "$1i squared 1is ",
$l * $l, Il\nll;
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foreach

* Another example
my %months = (Jan => 31, Feb => 28,
Mar => 31, Apr => 30,
May => 31, Jun => 30,
o )
foreach (keys %months) {
print "$_ has $months{$_} days\n";

}
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Using while Loops

* Taking input from STDIN

« while (<STDIN>) {
print;
ks

 This is the same as
while (defined($_ = <STDIN>)) {

print $_;
ks
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Breaking Out of Loops

* next - jump to next iteration of loop
* last - jump out of loop

* redo - jump to start of same iteration of
loop
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Subroutines

* Self-contained "mini-programs" within
your program

* Make it easy to repeat code

e Subroutines have a name and a block of
code

. sub NAME {
BLOCK
}
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Subroutine Example

* Simple subroutine example
sub exterminate {

print "Ex-Ter-Min-Ate!!'\n";
$timelords--;

}
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Calling a Subroutine

e &exterminate;
« exterminate();
e exterminate;

* last one only works if function has been
predeclared
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Subroutine Arguments

* Functions become far more useful if you
can pass arguments to them

« exterminate('The Doctor');

* Arguments end up in the @_ array within
the function

e Sub exterminate {
my ($name) = @_;
print "Ex-Ter-Min-Ate $name\n";
$timelords--;

}

UKUUG
25™ February 2009




Multiple Arguments

* As @_ is an array it can contain multiple
arguments

e Sub exterminate {
foreach (@_) {
print "Ex-Ter-Min-Ate $_\n";
$timelords--;
h
h
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Calling Subroutines

* A subtle difference between &my_sub and
my_sub ()

« &my_sub passes on the contents of @_ to

the called subroutine

sub first { &second };

sub second { print @_ };
first('some', 'random', 'data'),

* You usually don't want to do that
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By Value or Reference

* Passing by value passes the value of the
variable into the subroutine. Changing the
argument doesn't alter the external variable

* Passing by value passes the actual variable.
Changing the argument alters the external
value

* Perl allows you to choose
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By Value or Reference

* Simulating pass by value

e my ($argl, $arg2) = @_;

e Updating $argl and $arg2 doesn’t effect
anything outside the subroutine

* Simulating pass by reference

e $_[0] = 'whatever';

* Updating the contents of @_ updates the
external values
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Returning Values

e Use return to return a value from a

subroutine
sub exterminate {
if (rand > .25) {
print "Ex-Ter-Min-Ate $_[0]\n";
$timelords--;
return 1;
} else {
return;

}
}
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Returning a List

* Returning a list from a subroutine
sub exterminate {
my @exterminated;
foreach (@_) {
if (rand > .25) {

print "Ex-Ter-Min-Ate $_\n";
$timelords--;
push @exterminated, $_;

}
¥

return @exterminated;

¥
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Regular Expressions

* Patterns that match strings
* A bit like wild-cards

c A "mini-lanAguage" within Perl
- Alien DN

* The key to Perl's text processing power
* Sometimes overused!
* Documented in perldoc perlre
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Match Operator

* m/PATTERN/ - the match operator
* Works on $_ by default

e In scalar context returns true if the match
succeeds

* In list context returns list of "captured" text
* m is optional if you use / characters
* With m you can use any delimiters
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Match Examples

« while (<FILE>) {
print 1f /foo/;
orint 1if /bar/1i;
print if m|http://];
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Substitutions

* s/PATTERN/REPLACEMENTY/ - the
substitution operator

* Works on $_ by default

e In scalar context returns true if substitution
succeeds

e In list context returns number of
replacements

* Can choose any delimiter
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Substitution Examples

« while (<FILE>) {
s/teh/the/gi;
s/freind/friend/gi;
s/sholud/should/gi;
print;

¥
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Binding Operator

* If we want m// or s/// to work on
something other than $_ then we need to
use the binding operator

« $name =~ s/Dave/David/;
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Metacharacters

* Matching something other than literal text
e N - matches start of string

 $ - matches end of string

e . - matches any character (except \n)
* \S - matches a whitespace character
* \S - matches a non-whitespace character
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More Metacharacters

e \d - matc|
* \D - matc|
e \W - matc|
 \W - matc|
e \b - matc

nes any digit

nes any non-digit

hes any "'word" character

nes any "non-word" character
nes a word boundary

e \B - matc|
boundary
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Metacharacter Examples

« while (<FILE>) {

print i1f m|Ahttp];
orint i1f /\bperl\b/;
print if /\S/;

orint 1f /\$\d\.\d\d/;
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Quantifiers

* Specify the number of occurrences
e ? - match zero or one

* - match zero or more
e + - match one or more

* {n} - match exactly n

* {n, } - match n or more

 {n, m} - match between n and m
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Quantifier Examples

« while (<FILE>) {

print if /whiske?y/1;
orint if /so+n/;

print 1f /\d*\.\d+/;
orint 1f /\bA\w{3}\b/;
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Character Classes

 Define a class of characters to match
« /[aeliou]/ # match any vowel

* Use - to define a contiguous set
e /[A-Z]/ # match upper case letters

e Use N to match inverse set
e /[NA-Za-z] # match non-letters
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Alternation

* Use | to match one of a set of options
« /rose|marthaldonna/1i;

* Use parentheses for grouping
« /N(rose|martha|donna)$/1;
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Capturing Matches

* Parentheses are also used to capture parts
of the matched string

* The captured parts are in $1, $2, etc...
while (<FILE>) {
if (/A(\w+)\s+(\w+)/) {
print "The first word was $1\n";
print "The second word was $2";

}
}
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Returning Captures

* Captured values are also returned if the
match operator is used in list context

e my @nums = $text =~ /(\d+)/g;
print "I found these integers:\n";
print "@nums\n'";
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More Information

* perldoc perlre
* perldoc perlretut

* Mastering Regular Expressions — Jeffrey
Freidl
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Introducing References

* A reference is a bit like pointer in
languages like C and Pascal (but better)

* A reference is a unique way to refer to a
variable.

* A reference can always fit into a scalar
variable

A reference looks like
SCALAR(0x20026730)
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Creating References

e Put\in front of a ar1ab1e name

$scalar ref = \$scalar;
$array_ref = %array,
$hash ref = \%hash

* Can now treat it just like any other scalar
$var = $scalar_ref;
$refs[0] = $array_ref
$another_ref = $refs[0];
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Creating References

[ LIST ] creates anonymous array and

returns a reference
$aref = [ 'this', 'is', 'a', 'list'];
$aref2 = [ @array ];

{ LIST } creates anonymous hash and

returns a reference
$href {1 => "one', 2 => '"two' };
$href { %hash };
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Creating References

@arr = (1, 2, 3, 4);
$arefl = \@arr;

$aref2 = [ @arr ];

print "$arefi\n$aref2\n";

 Output
AR AY20X200268003

ARRAY (0x2002bc00
* Second method creates a copy of the array
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Using Array References

* Use {$aref} to get back an array that you
have a reference to

* Whole array

« @array = @{$aref};

e Qrev = reverse @{$aref};
* Single elements

« $elem = ${Saref}[0],

e« ${$aref}[0] = 'foo';
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Using Hash References

* Use {$href} to get back a hash that you
have a reference to

* Whole hash

« %hash = %{$href};

¢ Qkeys = keys %{$href};
* Single elements

« $Selem = ${Shref}{key},
e« ${$href}{key} = 'foo';
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Using References

* Use arrow (->) to access elements of arrays
or hashes

e Instead of ${Paref [ O] vou can use
$aref->[é] oty

e Instead of ${Phref }{ke ou can use
$href—>{§ey} Jikeyly
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Using References

* You can find out what a reference is
refemng to using re1c

e Saref = L 1, 2, 3 ];
print re $aref; # prlnts ARRAY
e $href = { 1 => 'one'
_ 2 => 'two ;
print ref $href; prlnts HASH
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Why Use References?

* Parameter parsing
* Complex data structures
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Parameter Passing

e What does this do?

. 8arr1 1, 2, 3);
arr2 = (4, 5, 6),;
check_size(@arrl, @arr2);

sub C?ack_sézg){ 0

m al, @a = @_,

o¥int @al == @a2 ?
'Yes' : 'No';
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Why Doesn't It Work?

 Arrays are combined in @_
e All elements end up in @al

e How do we fix it?
* Pass references to the arrays
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Another Attempt

-garrl = (1, 2, 3);
arr2 = (4, 5, 6);
check_size(\@arrl, \@arr2);

sub check_size {
my ($al, $a2) = @_;
print @%al == @%a2 ?
'Yes' : 'No';
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Complex Data Structures

* Another good use for references
* Try to create a 2-D array

e @arr_2d = ({1, 2, 3;,
4, 5, 6 3

7, 8, 9
* @arr_2d contains

1/ 2/ 3/ 4/ 5/ 6/ 7/ 8/ 9)
* This is known a array flattening
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Complex Data Structures

* 2D Array using references

e @arr_2d = ([1, 2, 3],
4, 5, 6.
7, 8, 91);

* But how do you access individual

elements?
* $arr_2d[1] isref to array (4, 5, 6)
 $arr_2d[1]->[1] is element 5
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Complex Data Structures

* Another 2D Array _
e $arr_2d = [[1, 2, 3],
4, 5, 6
7.8, 91];
. %c'itrr_Zd->:1: is refto array (4, 5,
e $arr_2d->[1]->[1] is element 5

e Can omit intermediate arrows
e arr_2d->[1][1]
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More Data Structures

* Imagine the following data file

« Jones,Martha, UNIT
Harkness,Jack,Torchwood _
Smith, Sarah Jane, Journalist

* What would be a good data structure?
* Hash for each record

* Array of records

* Array of hashes
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More Data Structures

* Building an array of hashes
o my grecords

my @cols = _
('s_name', 'f_name', 'job');
while (<FILE>) {
chomp;
my %rec;
@rec{gcols} llt /,/;
push records %rec
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Using an Array of Hashes

foreach records) {
print "$_->{f_name} ",
"$_—>is_name ",
"1s a $_->{job}\n";
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Complex Data Structures

* Many more possibilities
- Hash of hashes
~ Hash of lists
— Multiple levels (list of hash of hash, etc.)

* Lots of examples in “perldoc perldsc” (the
data structures cookbook)
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Smart Matching

* Introduced in Perl 5.10

* Powerful matching operator

* DWIM

* Examines operands

* Decides which match to apply
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Smart Match Operator

.~~

* New operator
e Looks a bit like the binding operator (=~)

* Can be used in place of it
« $some_text =~ /some regex/

* Can be replaced with
« $some_text ~~ /some regex/
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Smarter Matching

* If one of its operands is a regex
 ~~ does a regex match

* Cleverer than that though
« %hash ~~ /regex/

* Regex match on hash keys
e @array ~~ /regex/

* Regex match on array elements
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More Smart Matches

e @arrayl ~~ @array?2
* Checks that arrays are the same

« $scalar ~~ @array
* Checks scalar exists in array
e $scalar ~~ %hash

* Checks scalar is a hash key
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Smart Scalar Matches

* What kind of match does this do?
e $scalarl ~~ $scalar2

* It depends

* If both look like numbers
o ~~ acts like ==

* Otherwise

e ~~ acts like eq
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Modules

A module is a reusuable 'chunk' of code

* Perl comes with over 100 modules
(see “perldoc perlmodlib” for list)

* Perl has a repository of freely-available

modules - the Comprehensive Perl Archive
Network (CPAN)

~ http://www.cpan.org
~ http://search.cpan.org
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Finding Modules

* http://search.cpan.org
* Search by:

- module name
— distribution name
— author name

e Note: CPAN also contains newer versions
of standard modules
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Installing Modules
(The Hard Way)

e Download distribution file
-~ MyModule-X.XX.tar.gz

* Unzip

$ gunzip MyModule-X.XX.tar.gz
* Untar

$ tar xvf MyModule-X.XX.tar
* Change directory

$ cd MyModule-X.XX
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Installing Modules
(The Hard Way)

* Create Maketfile
$ perl Makefile.PL
e Build Module
$ make
* Test Build
$ make test
* Install Module
$ make install
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Installing Modules
(The Hard Way)

e Note: May need root permissions for make
install

* You can have your own personal module
library

« perl Makefile.PL PREFIX=~/perl
- need to adjust @QINC
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Installing Modules
(The Easy Way)

* Note: May not work (I;)r may need some
configuration) through a firewall

* CPANPLUS.pm is included with newer
Perls

* Automatically carries out installation
process

* Can also handle required modules

. M%/ still need to be root
— Can use 'sudo'
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Installing Modules
(The Easy Way)

e« Cpanp
. some stuff ..
PAN Terminal> install Some: :Module
£ . some more stuff ... ]
PAN Terminal> quit

* Or
e cpanp -1 Some: :Module
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Using Modules

* Two types of module:
~ Functions vs Objects

 Functional modules export new subroutines
and variables into your program

* Object modules usually don't
* Difference not clear cut (e.g. CGIL.pm)
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Using Functional Modules

* Import defaults:
use My: :Module;

* Import optional components:
use My: :Module gw(my_sub
@my_arr);

* Import defined sets of components:
use My:Module gw(:advanced);

* Use imported components:
$data = my_sub(@my_arr);
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Using ODbject Modules

* Use the module;
use My::0bject;

* Create an object: = |
$obj = My::0bject->new;
~ Note: new 1s just a convention

* Interact using object's methods
$obj->set_name($name);
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Useful Standard Modules

* constant * File::Copy
* Time::Local  POSIX

e Text::ParseWords e CGI

* Getopt::Std * Carp

e Cwd  Benchmark

* File::Basename * Data::Dumper

UKUUG
25™ February 2009




Useful Non-Standard

Modules
* Template * LWP
 DBI * WWW::Mechanize
* DBIx::Class * Email::Simple
 DateTime e XML::LibXML
« HTML.::Parser e XML::Feed
* HTML::Tidy * Moose
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Perl Websites

* Perl Home Page
~ http://www.perl.org

* CPAN

- http://www.cpan.org
~ http://search.cpan.org
* Perl Mongers (Perl User Groups)

- http://www.pm.org
~ http://london.pm.org
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Perl Websites

* use.perl — Perl News & Journals

~ http://use.perl.org/
* Perl Monks — Perl Help and Advice

~ http://perlmonks.org/
* Perl Documentation Online
~ http://perldoc.perl.org/
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Perl Conferences

* The Perl Conference
(part of the Open Source Convention)

— July 20-24 2009, San Jose, California

~ http://conferences.oreilly.com/oscon
* Yet Another Perl Conference

— August 3-5 2009, Lisbon, Portugal

=~ http://www.yapceurope.org
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Perl Conferences

e Other YAPCs

~ Pittsburgh, Pennsylvania
- Brazil
- Tokyo

* OSDC

— Israel
— Australia
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Perl Workshops

* One-day grassroots conferences

* Germany, Israel, Pittsburgh, Nordic,
Netherlands, France, Belgium, Russia,
Minnesota, Austria

* Perl Review Calendar
~ www.theperlreview.com/community_calendar
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Perl Malling Lists

* See http://lists.perl.org for full details
~ Perl Mongers (social discussion)
- CGI
- DBI
- XML
~ Beginners
- Advocacy
~ Fun with Perl
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Perl Books

* Books for learning Perl

~ Learning Perl (5th ed - June 2008)
Schwartz, Phoenix & foy (O'Reilly)

- Intermediate Perl
Schwartz, foy & Phoenix (O'Reilly)

~ Beginning Perl
Cozens (Wrox)
http://www.perl.org/books/beginning-perl/
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Perl Books

* Books you should have access to

~ Programming Perl (3rd edition)
Wall, Christiansen & Orwant (O'Reilly)

- The Perl Cookbook (2™ edition)
Christiansen & Torkington (O'Reilly)

— Perl Best Practices
Conway (O'Relilly)

~ Perl in a Nutshell
Siever, Spainhour & Patwardhan (O'Reilly)
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Perl Books

* Books you should probably look at
~ Mastering Regular Expressions
Friedl (O'Relilly)
— Data Munging with Perl
Cross (Manning)

- Advanced Perl Programming
Cozens (O'Reilly)

~ Perl Medic
Scott (Addison Wesley)
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Perl Books

* Specialised Perl books

~ Object Oriented Perl
Conway (Manning)

~ Programming the Perl DBI
Descartes & Bunce (O'Reilly)

— Writing CGI Applications with Perl
Meltzer & Michelski (Addison Wesley)

~ Practical mod_perl
Bekman & Cholet (O'Reilly)

~ Perl Template Toolkit
Chamberlain, Cross & Wardley
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Perl Magazines

* The Perl Review
~ http://www.theperlreview.com
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That's All Folks

* Questions?
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