An Introduction to Perl Programming
Dave Cross
Magnum Solutions Ltd
dave@mag-sol.com

UKUUG
25" February 2009

Open Source Consultaney, Development & Training

What We Will Cover

* What is Perl?

* Creating and running a Perl program
* Input and Output

* Perl variables

* Operators and Functions

e Conditional Constructs

UKUUG
25™ February 2009

What We Will Cover

* Subroutines

* Regular Expressions

* References

* Smart Matching

* Finding and using Modules

 Further Information

UKUUG
25™ February 2009

Schedule

* 09:45 — Begin

e 11:15 — Coftfee break
* 13:00 — Lunch

* 14:00 — Begin

e 15:30 — Coftee break
e 17:00 — End

UKUUG
25™ February 2009

Resources

* Slides available on-line
~ http://mag-sol.com/train/public/2009-02/begin
* Also see Slideshare
~ http://www.slideshare.net/davorg/slideshows
* Mailing List
~ http://lists.mag-sol.com/mailman/listinfo/beg2009
* Get Satisfaction
~ http://getsatisfaction.com/magnum

UKUUG
25™ February 2009

UKUUG
25" February 2009

Open Source Consultaney, Development & Training

Perl's Name

* Practical Extraction and Reporting
LLanguage
* Pathologically Eclectic Rubbish Lister

* "Perl" is the language
* "perl" is the compiler
* Never "PERL"

UKUUG
25™ February 2009

Typical uses of Perl

* Text processing

* System administration tasks
* CGI and web programming
* Database interaction

* Other Internet programming

UKUUG
25™ February 2009

Less typical uses of Perl

* Human Genome Project
*NASA

UKUUG
25™ February 2009

What Is Perl Like?

* General purpose programming language

* Free (open source)
* Fast

* Flexible

* Secure

* Fun

UKUUG
25™ February 2009

The Perl Philosophy

* There's more than one way to do it

* Three virtues of a programmer
- Laziness

~ Impatience
~ Hubris

* Share and enjoy!

UKUUG
25™ February 2009

UKUUG
25" February 2009

Open Source Consultaney, Development & Training

Creating a Perl Program

* Our first Perl program
print "Hello world\n'";

* Put this in a file called hello.pl

UKUUG
25™ February 2009

Running a Perl Program

* Running a Perl program from the command
line

* $ perl hello.pl

UKUUG
25™ February 2009

Running a Perl Program

* The "shebang" line (Unix, not Perl)
#1/usr/bin/perl

* Make program executable
$ chmod +x hello.pl

e Run from command line

$./hello.pl

UKUUG
25™ February 2009

Perl Comments

* Add comments to your code
e Start with a hash (#)

e Continue to end of line

e # This 1s a hello world program
print "Hello, world!\n"; # print

UKUUG
25™ February 2009

Command Line Options

* Many options to control execution of the
program
e For example, -w turns on warnings

e Use on command line
perl -w hello.pl

* Or on shebang line
#1/usr/bin/perl -w

UKUUG
25™ February 2009

UKUUG
25" February 2009

Open Source Consultaney, Development & Training

What Is a Variable?

* A place where we can store data

e A variable needs a name to

— retrieve the data stored in it

- put new data in it

UKUUG
25™ February 2009

Variable Names

* Contain alphanumeric characters and
underscores

* User variable names may not start with
numbers

* Variable names are preceded by a
punctuation mark indicating the type of
data

UKUUG
25™ February 2009

Open Source Consultaney, Development & Training

Types of Perl Variable

* Different types of variables start with a
different symbol

— Scalar variables start with $
~ Array variables start with @

— Hash variables start with %
* More on these types soon

UKUUG
25™ February 2009

Declaring Variables

* You don't need to declare variables in Perl
* But it's a very good idea

- typos

~ scoping
* Using the strict pragma

use strict;
my $var,;

UKUUG
25™ February 2009

Scalar Variables

* Store a single item of data

e my $name = "Arthur";
e my $whoami = 'Just Another Perl
Hacker';

« my $meaning_of_life = 42;
e my $number_less_than_1 = 0.000001;

e my $very_large_number = 3.27el7;
3.27 times 10 to the power of 17

UKUUG
25™ February 2009

Open Source Consultaney, Development & Training

Type Conversions

* Perl converts between strings and numbers
whenever necessary

* Add int to a floating point number
my $sum = $meaning_of_life +
$number_less_than_1;

* Putting a number into a string
print "$name says, 'The meaning of
life 1is $sum. '\n";

UKUUG
25™ February 2009

Quoting Strings

* Single quotes don't expand variables or
escape sequences
my $price = '$9.95';

* Double quotes do
my $invline =
"24 widgets @ $price each\n";

* Use a backslash to escape special

characters in double quoted strings
print "He said \"The price is \$300\"";

UKUUG
25™ February 2009

Open Source Consultaney, Development & Training

Better Quotes

* This can look ugly
print "He said \"The price is \$300\"";

* This is a tidier alternative
print gq(He said "The price is \$300");

* Also works for single quotes
print g(He said "That's too expensive");

UKUUG
25™ February 2009

Open Source Consultaney, Development & Training

Undefined Values

* A scalar variable that hasn't had data put into
it will contain the special value “undef”

* Test for it with “defined()” function
e« 1f (defined($my_var)) { ... }

UKUUG
25™ February 2009

Array Variables

* Arrays contain an ordered list of scalar

values
e« my @fruit = ('apples', 'oranges',
'guavas', 'passionfruit',
'grapes’);
e my @magic_numbers = (23, 42, 69);
e my @random_scalars = ('mumble’', 123.45,

'dave cross',
-300, $name);

UKUUG
25™ February 2009

Open Source Consultaney, Development & Training

Array Elements

* Accessing individual elements of an array

e print $fruits|[0O];
prints "apples"

e Note: Indexes start from zero

e print $random_scalars[2];
prints "dave cross"

* Note use of $ as individual element of an
array is a scalar

UKUUG
25™ February 2009

Open Source Consultaney, Development & Training

Array Slices

* Returns a list of elements from an array
e print @fruits[0,2,4],;
prints "apples'", "guavas',
"grapes"
e print @fruits[1 .. 3];
prints "oranges'", '"guavas',
"passionfruit"
* Note use of @ as we are accessing more

than one element of the array

UKUUG
25™ February 2009

Setting Array Values

e $array[4] = 'something';
$array[400] = 'something else';
* Also with slices
e @arrayl[4, 7 .. 9] = ('four', 'seven',
'eight', 'nine');
e @array[1l, 2] = @array[2, 1];

* Doesn't need to be an array!
- (3%, 3y) = (3y, $x);

UKUUG
25™ February 2009

Array Size

* $#array is the index of the last element in
@array
e Therefore $#array + 1 isthe number of

elements
« $count = @array;

does the same thing and is easier to
understand

UKUUG
25™ February 2009

Open Source Consultaney, Development & Training

Hash Variables

* Hashes implement “look-up tables” or
“dictionaries”

* Initialised with a list
%french = ('one', 'un', 'two', 'deux',
'three', 'trois');

* "fat comma" (=>) is easier to understand
%german = (one => 'ein',
two => 'zwel',
three => 'drei');

UKUUG
25™ February 2009

Open Source Consultaney, Development & Training

Accessing Hash Values

« $three = $french{three};
e print $german{two},

* As with arrays, notice the use of $ to
indicate that we're accessing a single value

UKUUG
25™ February 2009

Hash Slices

* Just like array slices

e Returns a list of elements from a hash
print @french{'one', 'two', 'three'};
prints "un", "deux" & "trois"

* Again, note use of @ as we are accessing
more than one value from the hash

UKUUG
25™ February 2009

Open Source Consultaney, Development & Training

Setting Hash Values

« $hash{foo} = 'something';
« $hash{bar} = 'something else';

* Also with slices

e @hash{'foo', 'bar'} =
('something', 'else');

e @hash{'foo', 'bar'} =
@hash{'bar', 'foo'};

UKUUG
25™ February 2009

More About Hashes

* Hashes are not sorted
* There is no equivalent to $#array
* print %hash is unhelpful

* We'll see ways round these restrictions later

UKUUG
25™ February 2009

Special Perl Variables

* Perl has many special variables

* Many of them have punctuation marks as
names

 Others have names in ALL_CAPS

* They are documented in perlvar

UKUUG
25™ February 2009

The Default Variable

* Many Perl operations either set $_ or use its
value if no other is given

e print; # prints the value of $_

* If a piece of Perl code seems to be missing
a variable, then it's probably using $_

* Think of “it” or “that” in English

UKUUG
25™ February 2009

Using $

« while (<FILE>) {
1f (/regex/) {
print;
h
h

e Three uses of $

UKUUG
25" February 2009

A Special Array

¢« ARGV

* Contains your programs command line
arguments

e perl printargs.pl foo bar baz

e my $num = @ARGV,
print "$num arguments: @ARGV\n";

UKUUG
25™ February 2009

A Special Hash

o« %ENV

e Contains the environment variables that
your script has access to.

* Keys are the variable names
Values are the... well... values!

e print $ENV{PATH};

UKUUG
25™ February 2009

UKUUG
25" February 2009

Open Source Consultaney, Development & Training

Input and Output

* Programs become more useful with input
and output

* We'll see more input and output methods
later in the day

* But here are some simple methods

UKUUG
25™ February 2009

Output

* The easiest way to get data out ot a Perl
program is to use print

e print “Hello world\n”;

UKUUG
25" February 2009

Open Source Consultaney, Development & Training

Input

* The easiest way to get data into a Perl
program is to read from STDIN

e $input = <STDIN>;

e < ... >isthe “read from filehandle”
operator

* STDIN is the standard input filehandle

UKUUG
25™ February 2009

A Complete Example

e #1/Uusr/bin/perl

rint 'wWhat 1s your name: ';
name = <STDIN>;
print “Hello $name”;

UKUUG
25™ February 2009

UKUUG
25" February 2009

Open Source Consultaney, Development & Training

Operators and Functions

* What are operators and functions?
* "Things" that do "stuff"
* Routines built into Perl to manipulate data

* Other languages have a strong distinction

between operators and functions
~ in Perl that distinction can be a bit blurred

* See perlop and perlfunc

UKUUG
25™ February 2009

Arithmetic Operators

* Standard arithmetic operations
add (+), subtract (-), multiply (*), divide (/)

* Less standard operations
modulus (%), exponentiation (**)

« $speed = $distance / $time;
$vol = $length * $breadth * $height;
$area = $pi * ($radius ** 2);
$odd = $number % 2;

UKUUG
25™ February 2009

Shortcut Operators

* Often need to do things like
$total = $total + $amount;

 Can be abbreviated to
$total += $amount;

 Even shorter
$x++; # same as $x += 1 or $x
$y--; # same as $y -= 1 or 3y

e Subtle difference between $x++ and ++$Xx

$x + 1
Sy - 1

UKUUG
25™ February 2009

Open Source Consultaney, Development & Training

String Operators

* Concaternation (.)
$name = $firstname . ' ' . $surname;

* Repetition (x)
$line = '-' x 80;
$police = 'hello ' x 3;

e Shortcut versions available
$page .= $line; # $page = $page . $line
$thing x= $i; # $thing = $thing x $1i

UKUUG
25™ February 2009

File Test Operators

* Check various attributes of a file
-e $file does the file exist

-r $file is the file readable

-w $file is the file writeable

-d $file is the file a directory
-f $file is the file a normal file
-T $file is a text file

* -B $file is a binary file

UKUUG
25™ February 2009

Functions

* Have longer names than operators
* Can take more arguments than operators
* Arguments follow the function name

* See perlfunc for a complete list of Perl's
built-in functions

UKUUG
25™ February 2009

Open Source Consultaney, Development & Training

Function Return Values

* Functions can return scalars or lists (or
nothing)
« $age = 29.75;
$years = int($age);
e @list = ('a', 'random',
‘collection', 'of',
'words');

@sorted = sort(@list);
a collection of random words

UKUUG
25™ February 2009

String Functions

* length returns the length of a string
$len = length $a_string;

* uc and lc return upper and lower case

versions of a string

$string = 'MiXeD CaSe';

print "$string\n", uc $string, "\n",
lc $string;

e Seealsoucfirst and 1lcfirst

UKUUG
25™ February 2009

More String Functions

* chop removes the last character from a

string and returns it
$word = 'word';
$letter = chop $word;

» chomp removes the last character only if it
is a newline and returns true or false
appropriately

UKUUG
25™ February 2009

Substrings

* substr returns substrings from a string
$string = 'Hello world';
print substr($string, 0, 5);
prints 'Hello'

* Unlike many other languages you can

assign to a substring

substr($string, 0, 5) = 'Greetings';
print $string;

prints 'Greetings world'

UKUUG
25™ February 2009

Open Source Consultaney, Development & Training

Numeric Functions

* abs returns the absolute value

* COS, sin, tan standard trigonometric
functions

* exp exponentiation using e
* log logarithm to base e
* rand returns a random number

* sgrt returns the square root

UKUUG
25™ February 2009

Open Source Consultaney, Development & Training

Array Manipulation

* push adds a new element to the end of an

array
push @array, $value;

* pop removes and returns the last element in

an array
$value = pop @array;

e shift and unshift do the same for the
start of an array

UKUUG
25™ February 2009

Array Manipulation

* sort returns a sorted list (it does not sort

the list in place)
@sorted = sort @array;

* sort does a lot more besides, see the docs
(perldoc -f sort)

* reverse returns a reversed list
@reverse = reverse @array;

UKUUG
25™ February 2009

Open Source Consultaney, Development & Training

Arrays and Strings

* join takes an array and returns a string
@array = (1 .. 5);
$string = join ' ', @array;
$string is '1 2 3 4 5

* split takes a string and converts it into an
array
$string = '1~2~3~4~5";
@array = split(/~/, $string);
@array 1is (1, 2, 3, 4, 5)

UKUUG
25™ February 2009

Hash Functions

* delete removes a key/value pair from a
hash

« exists tells you if an element exists in a
hash

 keys returns a list of all the keys in a hash

 values returns a list of all the values in a
hash

UKUUG
25™ February 2009

File Operations

* open opens a file and associates it with a

filehandle
open(FILE, 'in.dat');

* You can then read the file with <FILE>
$1ine = <FILE>; # one line
@lines = <FILE>; # all lines

* Finally, close the file with close
close(FILE);

UKUUG
25™ February 2009

Other File Functions

 read to read a fixed number of bytes into a

buffer
$bytes = read(FILE, $buffer, 1024),

* seek to move to a random position in a file
seek(FILE, 0, 0O);

* tell to get current file position
$where = tell FILE;

* truncate to truncate file to given size
truncate FILE, $where;

UKUUG
25™ February 2009

Time Functions

e time returns the number of seconds since
Jan 1st 1970

$now = time;

e Jocaltime converts that into more usable

values

($sec, $min, $hour, $mday, $mon,
$year, $wday, $yday, $isdst) =
localtime($now);

UKUUG
25™ February 2009

localtime Caveats

* $monisOto 11
* $year is years since 1900

* $wday is 0 (Sun) to 6 (Sat)

UKUUG
25™ February 2009

localtime Shortcuts

e [t's common to use localtime on the
current time
e @time_bits = localtime(time);

e Call to time can be omitted
e @ti1me_bits = localtime;

* Use array slices
e ($d, $m, $y) = (localtime)[3 .. 5];

UKUUG
25™ February 2009

Date & Time Formats

* You can get formatted dates by fiddling the
return values from localtime

* Easier to use strftime (from POSIX.pm)
e print strftime('%Y-%m-%d', localtime);

* Format followed by list of date/time values

e Format is POSIX standard

- Like UNIX date command
e print strftime ('%d %B %y', localtime);

UKUUG
25™ February 2009

UKUUG
25" February 2009

Open Source Consultaney, Development & Training

Conditional Constructs

e Conditional constructs allow us to choose
different routes of execution through the
program

* This makes for far more interesting
programs

* The unit of program execution is a block of
code

* Blocks are delimited with braces { ... }

UKUUG
25™ February 2009

Conditional Constructs

* Conditional blocks are controlled by the
evaluation of an expression to see if it is
true or false

e But what is truth?

UKUUG
25™ February 2009

What Is Truth?

* In Perl it's easier to answer the question

"what is false?"
~ 0 (the number zero)

~ " (the empty string)
~ undef (an undefined value)
~ () (an empty list)

* Everything else is true

UKUUG
25™ February 2009

Comparison Operators

* Compare two values in some way
~ are they equal
$x == Py or $x eq By
$x = $y or $x ne 3y

~ Is one greater than another
$x > $y or $x gt Py
$x >= Py or $x ge Py

- Also<(1t)and <= (le)

UKUUG
25™ February 2009

Comparison Examples

e 62 > 42 # true

e 'Q0' == (3 * 2) - 6 # true

« 'apple' gt 'banana' # false

« 'apple' == 'banana' # true(!)
e 1 + == '3 bears' # true
el + 3 == '"three' # false

UKUUG
25™ February 2009

Boolean Operators

e Combine two or more conditional
expressions into one

e« EXPR_ 1 and EXPR_2
true if both EXPR_1 and EXPR_2 are true

e EXPR 1 or EXPR 2
true if either EXPR 1 or EXPR 2 are true

e Alternative syntax && for and and | | for or
* Different precedence though

UKUUG
25™ February 2009

Short-Circuit Operators

e EXPR 1 or EXPR_ 2
Only need to evaluate EXPR_2 if EXPR_1

evaluates as false

e We can use this to make code easier to

follow
open FILE, 'something.dat'

or die "Can't open file: $!";
e @ARGV == 2 or print $usage_msg;

UKUUG
25™ February 2009

If

e if - our first conditional
. if (EXPR) { BLOCK }

* Only executes BLOCK if EXPR is true
if ($name eq 'Doctor') {
regenerate();

}

UKUUG
25™ February 2009

If ... else ...

* if ... else ... - an extended if
if (EXPR) { BLOCK1 } else { BLOCK2}
* [f EXPR is true, execute BLOCK1,
otherwise execute BLOCK?2
e 1T ($name eq 'Doctor') {
regenerate();

} else {
die "Game over!\n";

}

UKUUG
25™ February 2009

If ... elsif ... else ...

e if ... elsif ... else ... - even more control
if (EXPR1) { BLOCK1 }
elsif (EXPR2) { BLOCK2 }
else { BLOCK3 }

e [f EXPRI1 is true, execute BLOCK1
else if EXPR?2 is true, execute BLOCK?2
otherwise execute BLOCKS3

UKUUG
25™ February 2009

If ... elsif ... else ...

* An example

i1f ($name eq 'Doctor') {
regenerate();

} elsif ($tardis_location

eq $here) {

escape();

} else {
die "Game over!\n";

}

UKUUG
25™ February 2009

while

* while - repeat the same code
while (EXPR) { BLOCK }

* Repeat BLOCK while EXPR is true
while ($dalek_prisoners) {
print "Ex-ter-min-ate\n";
$dalek_prisoners--;

}

UKUUG
25™ February 2009

until

* until - the opposite of while
until (EXPR) { BLOCK }

* Execute BLOCK until EXPR is true
until ($regenerations == 12) {
print "Regenerating\n";
regenerate();
$regenerations++;

}

UKUUG
25™ February 2009

for

* for - more complex loops
for (INIT; EXPR; INCR) { BLOCK }

e Like C

* Execute INIT
If EXPR is false, exit loop, otherwise
execute BLOCK, execute INCR and retest
EXPR

UKUUG
25™ February 2009

for

* An example
for ($1i = 1; $i <= 10; $i++) {
print "$1 squared 1is ",
$l * $l, Il\nll;
h

* Used surprisingly rarely

UKUUG
25" February 2009

foreach

* foreach - simpler looping over lists
foreach VAR (LIST) { BLOCK }

* For each element of LIST, set VAR to

equal the element and execute BLOCK
« foreach $1 (1 .. 10) {
print "$1i squared 1is ",
$l * $l, Il\nll;

UKUUG
25™ February 2009

foreach

* Another example
my %months = (Jan => 31, Feb => 28,
Mar => 31, Apr => 30,
May => 31, Jun => 30,
o)
foreach (keys %months) {
print "$_ has $months{$_} days\n";

}

UKUUG
25™ February 2009

Using while Loops

* Taking input from STDIN

« while (<STDIN>) {
print;
ks

 This is the same as
while (defined($_ = <STDIN>)) {

print $_;
ks

UKUUG
25™ February 2009

Breaking Out of Loops

* next - jump to next iteration of loop
* last - jump out of loop

* redo - jump to start of same iteration of
loop

UKUUG
25™ February 2009

UKUUG
25" February 2009

Open Source Consultaney, Development & Training

Subroutines

* Self-contained "mini-programs" within
your program

* Make it easy to repeat code

e Subroutines have a name and a block of
code

. sub NAME {
BLOCK
}

UKUUG
25™ February 2009

Subroutine Example

* Simple subroutine example
sub exterminate {

print "Ex-Ter-Min-Ate!!'\n";
$timelords--;

}

UKUUG
25™ February 2009

Calling a Subroutine

e &exterminate;
« exterminate();
e exterminate;

* last one only works if function has been
predeclared

UKUUG
25™ February 2009

Subroutine Arguments

* Functions become far more useful if you
can pass arguments to them

« exterminate('The Doctor');

* Arguments end up in the @_ array within
the function

e Sub exterminate {
my ($name) = @_;
print "Ex-Ter-Min-Ate $name\n";
$timelords--;

}

UKUUG
25™ February 2009

Multiple Arguments

* As @_ is an array it can contain multiple
arguments

e Sub exterminate {
foreach (@_) {
print "Ex-Ter-Min-Ate $_\n";
$timelords--;
h
h

UKUUG
25™ February 2009

Calling Subroutines

* A subtle difference between &my_sub and
my_sub ()

« &my_sub passes on the contents of @_ to

the called subroutine

sub first { &second };

sub second { print @_ };
first('some', 'random', 'data'),

* You usually don't want to do that

UKUUG
25™ February 2009

By Value or Reference

* Passing by value passes the value of the
variable into the subroutine. Changing the
argument doesn't alter the external variable

* Passing by value passes the actual variable.
Changing the argument alters the external
value

* Perl allows you to choose

UKUUG
25™ February 2009

By Value or Reference

* Simulating pass by value

e my ($argl, $arg2) = @_;

e Updating $argl and $arg2 doesn’t effect
anything outside the subroutine

* Simulating pass by reference

e $_[0] = 'whatever';

* Updating the contents of @_ updates the
external values

UKUUG
25™ February 2009

Returning Values

e Use return to return a value from a

subroutine
sub exterminate {
if (rand > .25) {
print "Ex-Ter-Min-Ate $_[0]\n";
$timelords--;
return 1;
} else {
return;

}
}

UKUUG
25™ February 2009

Open Source Consultaney, Development & Training

Returning a List

* Returning a list from a subroutine
sub exterminate {
my @exterminated;
foreach (@_) {
if (rand > .25) {

print "Ex-Ter-Min-Ate $_\n";
$timelords--;
push @exterminated, $_;

}
¥

return @exterminated;

¥

UKUUG
25™ February 2009

Open Source Consultaney, Development & Training

UKUUG
25" February 2009

Open Source Consultaney, Development & Training

Regular Expressions

* Patterns that match strings
* A bit like wild-cards

c A "mini-lanAguage" within Perl
- Alien DN

* The key to Perl's text processing power
* Sometimes overused!
* Documented in perldoc perlre

UKUUG
25™ February 2009

Match Operator

* m/PATTERN/ - the match operator
* Works on $_ by default

e In scalar context returns true if the match
succeeds

* In list context returns list of "captured" text
* m is optional if you use / characters
* With m you can use any delimiters

UKUUG
25™ February 2009

Match Examples

« while (<FILE>) {
print 1f /foo/;
orint 1if /bar/1i;
print if m|http://];

UKUUG
25™ February 2009

Substitutions

* s/PATTERN/REPLACEMENTY/ - the
substitution operator

* Works on $_ by default

e In scalar context returns true if substitution
succeeds

e In list context returns number of
replacements

* Can choose any delimiter

UKUUG
25™ February 2009

Substitution Examples

« while (<FILE>) {
s/teh/the/gi;
s/freind/friend/gi;
s/sholud/should/gi;
print;

¥

UKUUG
25™ February 2009

Binding Operator

* If we want m// or s/// to work on
something other than $_ then we need to
use the binding operator

« $name =~ s/Dave/David/;

UKUUG
25™ February 2009

Metacharacters

* Matching something other than literal text
e N - matches start of string

 $ - matches end of string

e . - matches any character (except \n)
* \S - matches a whitespace character
* \S - matches a non-whitespace character

UKUUG
25™ February 2009

More Metacharacters

e \d - matc|
* \D - matc|
e \W - matc|
 \W - matc|
e \b - matc

nes any digit

nes any non-digit

hes any "'word" character

nes any "non-word" character
nes a word boundary

e \B - matc|
boundary

UKUUG
25™ February 2009

nes anywhere except a word

Metacharacter Examples

« while (<FILE>) {

print i1f m|Ahttp];
orint i1f /\bperl\b/;
print if /\S/;

orint 1f /\$\d\.\d\d/;

UKUUG
25™ February 2009

Quantifiers

* Specify the number of occurrences
e ? - match zero or one

* - match zero or more
e + - match one or more

* {n} - match exactly n

* {n, } - match n or more

 {n, m} - match between n and m

UKUUG
25™ February 2009

Open Source Consultaney, Development & Training

Quantifier Examples

« while (<FILE>) {

print if /whiske?y/1;
orint if /so+n/;

print 1f /\d*\.\d+/;
orint 1f /\bA\w{3}\b/;

UKUUG
25™ February 2009

Character Classes

 Define a class of characters to match
« /[aeliou]/ # match any vowel

* Use - to define a contiguous set
e /[A-Z]/ # match upper case letters

e Use N to match inverse set
e /[NA-Za-z] # match non-letters

UKUUG
25™ February 2009

Alternation

* Use | to match one of a set of options
« /rose|marthaldonna/1i;

* Use parentheses for grouping
« /N(rose|martha|donna)$/1;

UKUUG
25™ February 2009

Capturing Matches

* Parentheses are also used to capture parts
of the matched string

* The captured parts are in $1, $2, etc...
while (<FILE>) {
if (/A(\w+)\s+(\w+)/) {
print "The first word was $1\n";
print "The second word was $2";

}
}

UKUUG
25™ February 2009

Returning Captures

* Captured values are also returned if the
match operator is used in list context

e my @nums = $text =~ /(\d+)/g;
print "I found these integers:\n";
print "@nums\n'";

UKUUG
25™ February 2009

More Information

* perldoc perlre
* perldoc perlretut

* Mastering Regular Expressions — Jeffrey
Freidl

UKUUG
25™ February 2009

UKUUG
25" February 2009

Open Source Consultaney, Development & Training

Introducing References

* A reference is a bit like pointer in
languages like C and Pascal (but better)

* A reference is a unique way to refer to a
variable.

* A reference can always fit into a scalar
variable

A reference looks like
SCALAR(0x20026730)

UKUUG
25™ February 2009

Creating References

e Put\in front of a ar1ab1e name

$scalar ref = \$scalar;
$array_ref = %array,
$hash ref = \%hash

* Can now treat it just like any other scalar
$var = $scalar_ref;
$refs[0] = $array_ref
$another_ref = $refs[0];

UKUUG
25™ February 2009

Creating References

[LIST] creates anonymous array and

returns a reference
$aref = ['this', 'is', 'a', 'list'];
$aref2 = [@array];

{ LIST } creates anonymous hash and

returns a reference
$href {1 => "one', 2 => '"two' };
$href { %hash };

UKUUG
25™ February 2009

Creating References

@arr = (1, 2, 3, 4);
$arefl = \@arr;

$aref2 = [@arr];

print "$arefi\n$aref2\n";

 Output
AR AY20X200268003

ARRAY (0x2002bc00
* Second method creates a copy of the array

UKUUG
25™ February 2009

Using Array References

* Use {$aref} to get back an array that you
have a reference to

* Whole array

« @array = @{$aref};

e Qrev = reverse @{$aref};
* Single elements

« $elem = ${Saref}[0],

e« ${$aref}[0] = 'foo';

UKUUG
25™ February 2009

Using Hash References

* Use {$href} to get back a hash that you
have a reference to

* Whole hash

« %hash = %{$href};

¢ Qkeys = keys %{$href};
* Single elements

« $Selem = ${Shref}{key},
e« ${$href}{key} = 'foo';

UKUUG
25™ February 2009

Using References

* Use arrow (->) to access elements of arrays
or hashes

e Instead of ${Paref [O] vou can use
$aref->[é] oty

e Instead of ${Phref }{ke ou can use
$href—>{§ey} Jikeyly

UKUUG
25™ February 2009

Using References

* You can find out what a reference is
refemng to using re1c

e Saref = L 1, 2, 3];
print re $aref; # prlnts ARRAY
e $href = { 1 => 'one'
_ 2 => 'two ;
print ref $href; prlnts HASH

UKUUG
25™ February 2009

Why Use References?

* Parameter parsing
* Complex data structures

UKUUG
25™ February 2009

Parameter Passing

e What does this do?

. 8arr1 1, 2, 3);
arr2 = (4, 5, 6),;
check_size(@arrl, @arr2);

sub C?ack_sézg){ 0

m al, @a = @_,

o¥int @al == @a2 ?
'Yes' : 'No';

UKUUG
25™ February 2009

Why Doesn't It Work?

 Arrays are combined in @_
e All elements end up in @al

e How do we fix it?
* Pass references to the arrays

UKUUG
25™ February 2009

Another Attempt

-garrl = (1, 2, 3);
arr2 = (4, 5, 6);
check_size(\@arrl, \@arr2);

sub check_size {
my ($al, $a2) = @_;
print @%al == @%a2 ?
'Yes' : 'No';

UKUUG
25™ February 2009

Complex Data Structures

* Another good use for references
* Try to create a 2-D array

e @arr_2d = ({1, 2, 3;,
4, 5, 6 3

7, 8, 9
* @arr_2d contains

1/ 2/ 3/ 4/ 5/ 6/ 7/ 8/ 9)
* This is known a array flattening

UKUUG
25™ February 2009

Complex Data Structures

* 2D Array using references

e @arr_2d = ([1, 2, 3],
4, 5, 6.
7, 8, 91);

* But how do you access individual

elements?
* $arr_2d[1] isref to array (4, 5, 6)
 $arr_2d[1]->[1] is element 5

UKUUG
25™ February 2009

Complex Data Structures

* Another 2D Array _
e $arr_2d = [[1, 2, 3],
4, 5, 6
7.8, 91];
. %c'itrr_Zd->:1: is refto array (4, 5,
e $arr_2d->[1]->[1] is element 5

e Can omit intermediate arrows
e arr_2d->[1][1]

UKUUG
25™ February 2009

More Data Structures

* Imagine the following data file

« Jones,Martha, UNIT
Harkness,Jack,Torchwood _
Smith, Sarah Jane, Journalist

* What would be a good data structure?
* Hash for each record

* Array of records

* Array of hashes

UKUUG
25™ February 2009

More Data Structures

* Building an array of hashes
o my grecords

my @cols = _
('s_name', 'f_name', 'job');
while (<FILE>) {
chomp;
my %rec;
@rec{gcols} llt /,/;
push records %rec

UKUUG
25™ February 2009

Using an Array of Hashes

foreach records) {
print "$_->{f_name} ",
"$_—>is_name ",
"1s a $_->{job}\n";

UKUUG
25™ February 2009

Complex Data Structures

* Many more possibilities
- Hash of hashes
~ Hash of lists
— Multiple levels (list of hash of hash, etc.)

* Lots of examples in “perldoc perldsc” (the
data structures cookbook)

UKUUG
25™ February 2009

UKUUG
25" February 2009

Open Source Consultaney, Development & Training

Smart Matching

* Introduced in Perl 5.10

* Powerful matching operator

* DWIM

* Examines operands

* Decides which match to apply

UKUUG
25™ February 2009

Smart Match Operator

.~~

* New operator
e Looks a bit like the binding operator (=~)

* Can be used in place of it
« $some_text =~ /some regex/

* Can be replaced with
« $some_text ~~ /some regex/

UKUUG
25™ February 2009

Smarter Matching

* If one of its operands is a regex
 ~~ does a regex match

* Cleverer than that though
« %hash ~~ /regex/

* Regex match on hash keys
e @array ~~ /regex/

* Regex match on array elements

UKUUG
25™ February 2009

More Smart Matches

e @arrayl ~~ @array?2
* Checks that arrays are the same

« $scalar ~~ @array
* Checks scalar exists in array
e $scalar ~~ %hash

* Checks scalar is a hash key

UKUUG
25™ February 2009

Smart Scalar Matches

* What kind of match does this do?
e $scalarl ~~ $scalar2

* It depends

* If both look like numbers
o ~~ acts like ==

* Otherwise

e ~~ acts like eq

UKUUG
25™ February 2009

UKUUG
25" February 2009

Open Source Consultaney, Development & Training

Modules

A module is a reusuable 'chunk' of code

* Perl comes with over 100 modules
(see “perldoc perlmodlib” for list)

* Perl has a repository of freely-available

modules - the Comprehensive Perl Archive
Network (CPAN)

~ http://www.cpan.org
~ http://search.cpan.org

UKUUG
25™ February 2009

Finding Modules

* http://search.cpan.org
* Search by:

- module name
— distribution name
— author name

e Note: CPAN also contains newer versions
of standard modules

UKUUG
25™ February 2009

Open Source Consultaney, Development & Training

Installing Modules
(The Hard Way)

e Download distribution file
-~ MyModule-X.XX.tar.gz

* Unzip

$ gunzip MyModule-X.XX.tar.gz
* Untar

$ tar xvf MyModule-X.XX.tar
* Change directory

$ cd MyModule-X.XX

UKUUG
25™ February 2009

Installing Modules
(The Hard Way)

* Create Maketfile
$ perl Makefile.PL
e Build Module
$ make
* Test Build
$ make test
* Install Module
$ make install

UKUUG
25™ February 2009

Installing Modules
(The Hard Way)

e Note: May need root permissions for make
install

* You can have your own personal module
library

« perl Makefile.PL PREFIX=~/perl
- need to adjust @QINC

UKUUG
25™ February 2009

Installing Modules
(The Easy Way)

* Note: May not work (I;)r may need some
configuration) through a firewall

* CPANPLUS.pm is included with newer
Perls

* Automatically carries out installation
process

* Can also handle required modules

. M%/ still need to be root
— Can use 'sudo'

UKUUG
25™ February 2009

Installing Modules
(The Easy Way)

e« Cpanp
. some stuff ..
PAN Terminal> install Some: :Module
£ . some more stuff ...]
PAN Terminal> quit

* Or
e cpanp -1 Some: :Module

UKUUG
25™ February 2009

Using Modules

* Two types of module:
~ Functions vs Objects

 Functional modules export new subroutines
and variables into your program

* Object modules usually don't
* Difference not clear cut (e.g. CGIL.pm)

UKUUG
25™ February 2009

Using Functional Modules

* Import defaults:
use My: :Module;

* Import optional components:
use My: :Module gw(my_sub
@my_arr);

* Import defined sets of components:
use My:Module gw(:advanced);

* Use imported components:
$data = my_sub(@my_arr);

UKUUG
25™ February 2009

Using ODbject Modules

* Use the module;
use My::0bject;

* Create an object: = |
$obj = My::0bject->new;
~ Note: new 1s just a convention

* Interact using object's methods
$obj->set_name($name);

UKUUG
25™ February 2009

Useful Standard Modules

* constant * File::Copy
* Time::Local POSIX

e Text::ParseWords e CGI

* Getopt::Std * Carp

e Cwd Benchmark

* File::Basename * Data::Dumper

UKUUG
25™ February 2009

Useful Non-Standard

Modules
* Template * LWP
 DBI * WWW::Mechanize
* DBIx::Class * Email::Simple
 DateTime e XML::LibXML
« HTML.::Parser e XML::Feed
* HTML::Tidy * Moose

UKUUG
25™ February 2009

UKUUG
25" February 2009

Open Source Consultaney, Development & Training

Perl Websites

* Perl Home Page
~ http://www.perl.org

* CPAN

- http://www.cpan.org
~ http://search.cpan.org
* Perl Mongers (Perl User Groups)

- http://www.pm.org
~ http://london.pm.org

UKUUG
25™ February 2009

Perl Websites

* use.perl — Perl News & Journals

~ http://use.perl.org/
* Perl Monks — Perl Help and Advice

~ http://perlmonks.org/
* Perl Documentation Online
~ http://perldoc.perl.org/

UKUUG
25™ February 2009

Perl Conferences

* The Perl Conference
(part of the Open Source Convention)

— July 20-24 2009, San Jose, California

~ http://conferences.oreilly.com/oscon
* Yet Another Perl Conference

— August 3-5 2009, Lisbon, Portugal

=~ http://www.yapceurope.org

UKUUG
25™ February 2009

Perl Conferences

e Other YAPCs

~ Pittsburgh, Pennsylvania
- Brazil
- Tokyo

* OSDC

— Israel
— Australia

UKUUG
25™ February 2009

Perl Workshops

* One-day grassroots conferences

* Germany, Israel, Pittsburgh, Nordic,
Netherlands, France, Belgium, Russia,
Minnesota, Austria

* Perl Review Calendar
~ www.theperlreview.com/community_calendar

UKUUG
25™ February 2009

Open Source Consultaney, Development & Training

Perl Malling Lists

* See http://lists.perl.org for full details
~ Perl Mongers (social discussion)
- CGI
- DBI
- XML
~ Beginners
- Advocacy
~ Fun with Perl

UKUUG
25™ February 2009

Perl Books

* Books for learning Perl

~ Learning Perl (5th ed - June 2008)
Schwartz, Phoenix & foy (O'Reilly)

- Intermediate Perl
Schwartz, foy & Phoenix (O'Reilly)

~ Beginning Perl
Cozens (Wrox)
http://www.perl.org/books/beginning-perl/

UKUUG
25™ February 2009

Perl Books

* Books you should have access to

~ Programming Perl (3rd edition)
Wall, Christiansen & Orwant (O'Reilly)

- The Perl Cookbook (2™ edition)
Christiansen & Torkington (O'Reilly)

— Perl Best Practices
Conway (O'Relilly)

~ Perl in a Nutshell
Siever, Spainhour & Patwardhan (O'Reilly)

UKUUG
25™ February 2009

Perl Books

* Books you should probably look at
~ Mastering Regular Expressions
Friedl (O'Relilly)
— Data Munging with Perl
Cross (Manning)

- Advanced Perl Programming
Cozens (O'Reilly)

~ Perl Medic
Scott (Addison Wesley)

UKUUG
25™ February 2009

Perl Books

* Specialised Perl books

~ Object Oriented Perl
Conway (Manning)

~ Programming the Perl DBI
Descartes & Bunce (O'Reilly)

— Writing CGI Applications with Perl
Meltzer & Michelski (Addison Wesley)

~ Practical mod_perl
Bekman & Cholet (O'Reilly)

~ Perl Template Toolkit
Chamberlain, Cross & Wardley
UKUUG

25™ February 2009

Perl Magazines

* The Perl Review
~ http://www.theperlreview.com

UKUUG
25" February 2009

That's All Folks

* Questions?

UKUUG
25" February 2009

Open Source Consultaney, Development & Training

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Creating References
	Slide 121
	Slide 122
	Using References
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Why Use References?
	Why Use Reference?
	Why Use References
	Complex Data Structures
	Slide 132
	Complex Data Structure
	More Complex Data Structures
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Finding Modules
	Installing Modules (Hard Way)
	Slide 148
	Slide 149
	Installing Modules (Easy Way)
	Slide 151
	Using Modules
	Using Functional Modules
	Using Object Modules
	Useful Standard Modules
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169

