Ir) "I‘JfJ'JCL‘]UIJ

Dave Cross
Magnum Solutions Ltd

7 dave@ma_g-sol_ com

What We Will Cover

* What is Perl?

* Creating and running a Perl program
* Getting help

* Input and Output

* Perl variables

* Operators and Functions

UKUUG
24th November 2009

What We Will Cover

* Conditional Constructs
* Subroutines

* Regular Expressions

* Smart Matching

* Finding and using Modules

UKUUG
24th November 2009

Schedule

* 09:45 — Begin

* 11:15 — Coffee break (15 mins)
* 13:00 — Lunch (60 mins)

* 14:00 — Begin

* 15:30 — Coffee break (15 mins)
* 17:00 — End

UKUUG
24th November 2009

Resources

* Slides available on-line

- http://mag-sol.com/train/public/2009-11/ukuug
* Also see Slideshare

- http://www.slideshare.net/davorg/slideshows
* Get Satisfaction

- http://getsatisfaction.com/magnum

UKUUG
24th November 2009

Perl's Name

* Practical Extraction and Reporting
Language

* Pathologically Eclectic Rubbish Lister
* “Perl” is the language

* “perl” is the compiler

* Never “PERL”

UKUUG
24th November 2009

Typical Uses of Perl

* Text processing

* System administration tasks
* CGI and web programming
* Database interaction

* Other Internet programming

UKUUG
24th November 2009

Less Typical Uses of Perl

* Human Genome Project
* NASA

UKUUG
24th November 2009

What Is Perl Like?

* General purpose programming language
* Free (open source)

* Fast

* Flexible

* Secure

* Fun

UKUUG
24th November 2009

The Perl Philosophy

* There's more than one way to do it

* Three virtues of a programmer

- Laziness
- Impatience
- Hubris

* Share and enjoy!

UKUUG
24th November 2009

]JU =) f)e)
IJJIJJ -]
I‘J_JI‘rJIIJ

I_C
l_
I_L

Creating a Perl Program

* Our first Perl program
e print "Hello world\n";

* Put this in a file called hello.pl

UKUUG
24th November 2009

Running a Perl Program

* Running a Perl program from the command
line
« $ perl hello.pl

UKUUG
24th November 2009

Running a Perl Program

* The "shebang" line (Unix, not Perl)
e« #1/usr/bin/perl

* Make program executable
« $ chmod +x hello.pl

e Run from command line
«$./hello.pl

UKUUG
24th November 2009

Perl Comments

* Add comments to your code
* Start with a hash (#)
* Continue to end of line

e # This 1s a hello world program
print "Hello, world!\n"; # print

UKUUG
24th November 2009

Command Line Options

* Options to control execution of the program
* For example, -w turns on warnings

e Use on command line

e perl -w hello.pl

* Or on shebang line
e #1/usr/bin/perl -w

* More usually use warnings

UKUUG
24th November 2009

Perl Documentation

* Perl comes with a huge amount of
documentation

e Accessed through the perldoc command

« perldoc perl

 perldoc perltoc — table of contents

* Also online at http://perldoc.perl.org/

* Lots of references through the course

UKUUG
24th November 2009

Some Useful Pages

* perlintro

* perldata

* perlsyn
* perlfaq
* perlstyle

* perlcheat

* Many many more

UKUUG
24th November 2009

Parl V2arlmiolas

What Is a Variable?

* A place where we can store data

A variable needs a name

- To put new data in it

- To retrieve the data stored in it

UKUUG
24th November 2009

Variable Names

* Contain alphanumeric characters and
underscores

* User variable names may not start with
numbers

* Variable names are preceded by a
punctuation mark indicating the type of data

UKUUG
24th November 2009

Open Source Consultaney, Development & Training

Types of Perl Variable

* Different types of variables start with a
different symbol

— Scalar variables start with $
- Array variables start with @

— Hash variables start with %

* More on these types soon

UKUUG
24th November 2009

Declaring Variables

* You don't need to declare variables in Perl

* But it's a very good idea
- typos
- scoping
e Using the strict pragma

e USe strict;
my $var,

UKUUG
24th November 2009

Scalar Variables

* Store a single item of data
e my $name = "Arthur";

e my $whoami =
"Just Another Perl Hacker'

e my $meaning_of_life = 42;
e my $number_less_than_1 = 0.000001;

e my $very_large_number = 3.27el7;
3.27 times 10 to the power_of_l?

UKUUG
24th November 2009

Type Conversions

* Perl converts between strings and numbers
whenever necessary

* Add int to a floating point number

e my $sum = $meaning_of_life +
$number_less_than_1;

* Putting a number into a string

e« print "$name says, 'The meaning
of 1life is $sum. '\n";

UKUUG
24th November 2009

Quoting Strings

* Single quotes don't expand variables or
escape sequences

e my $price = '$9.95"';
* Double quotes do

e my $invline =
"24 widgets @ $price each\n"”

N =

UKUUG
24th November 2009

Backslashes

* Use a backslash to escape special characters
in double quoted strings

e print "He said \"The price 1s
\$30060\"";

* This can look ugly

UKUUG
24th November 2009

Better Quotes

* This is a tidier alternative

e print gqq(He said "The price 1s
\$300");

* Also works for single quotes

e print q(He said "That's too
expensive'");

UKUUG
24th November 2009

Undefined Values

* A scalar variable that hasn't had data put into
it will contain the special value “undef”

e Test for it with defined() function
e if (defined($my_var)) { ... }

UKUUG
24th November 2009

Array Variables

* Arrays contain an ordered list of scalar
values
e my @fruit = ('apples', 'oranges',

'guavas', 'passionfruit',
'grapes’');

- my @magic_numbers = (23, 42, 69);

e my @random_scalars = ('mumble', 123.45,
'dave cross',
-300, S$name);

UKUUG
24th November 2009

Open Source Consultaney, Development & Training

Array Elements

* Accessing individual elements of an array

e print $fruits|[0O];
prints ”apples”

e Note: Indexes start from zero

e print $random_scalars[2];
prints '"dave cross"

 Note use of $ as individual element of an
array is a scalar

UKUUG
24th November 2009

Open Source Consultaney, Development & Training

Array Slices

* Returns a list of elements from an array
e print @fruits[0,2,4];

prints "apples", '"guavas',

"grapes"

e print @fruits[l1 .. 3];
prints "oranges", "guavas",
"passionfruit”

* Note use of @ as we are accessing more
than one element of the array

UKUUG
24th November 2009

Setting Array Values

« $array[4] = 'something';

« $array[400] = 'something else';

 Also with slices

e @arrayl[4, 7 .. 9] = ('four', "'seven',
'eight’', 'nine');

e @array[1, 2] = @array[2, 1];

* Doesn't need to be an array
- (3%, $y) = (3y, 3Xx);

UKUUG
24th November 2009

Array Size

* $#array is the index of the last element in
@array

 Therefore $#array + 1 is the number of
elements

« $count = @array;

* Does the same thing and is easier to
understand

UKUUG
24th November 2009

Open Source Consultaney, Development & Training

Hash Variables

* Hashes implement “look-up tables” or
“dictionaries”

e Initialised with a list

« %french = ('one', 'un',
'two', 'deux',
'three', 'trois');

UKUUG
24th November 2009

Open Source Consultaney, Development & Training

Fat Comma

* The “fat comma” (=>) is easier to
understand
e %german = (one => 'eln',
two => 'zwel',
three => 'dreli');

UKUUG
24th November 2009

Accessing Hash Values

« $three = $french{three};
e print $german{two};

* As with arrays, notice the use of $ to
indicate that we're accessing a single value

UKUUG
24th November 2009

Hash Slices

* Just like array slices

e Returns a list of elements from a hash

e print
@french{'one', 'two', "three'};
prints "un", "deux" & "trois"

* Again, note use of @ as we are accessing
more than one value from the hash

UKUUG
24th November 2009

Open Source Consultaney, Development & Training

Setting Hash Values

« $hash{foo} = 'something';
« $hash{bar} = 'something else';

* Also with slices

e @hash{'foo', 'bar'} =
('something', 'else');

e @hash{'foo', 'bar'} =
@hash{'bar', 'foo'};

UKUUG
24th November 2009

More About Hashes

* Hashes are not sorted
* There is no equivalent to $#array
e print %hash is unhelpful

* We'll see ways round these restrictions later

UKUUG
24th November 2009

Special Perl Variables

* Perl has many special variables

* Many of them have punctuation marks as
names

e Others have names in ALL_CAPS

* They are documented in perlvar

UKUUG
24th November 2009

The Default Variable

* Many Perl operations either set $_ or use its
value if no other is given

e print; # prints the value of $_

* If a piece of Perl code seems to be missing a
variable, then it's probably using $_

* Think of “it” or “that” in English

UKUUG
24th November 2009

Using $
« while (<FILE>) {
it (/regex/) {
print;
h

}

e Three uses of $

UKUUG
24th November 2009

A Special Array

e @ARGV
* Contains your programs command line
arguments

e my $num = @ARGV;
print "$num arguments: @ARGV\n"

. =

e perl printargs.pl foo bar baz

UKUUG
24th November 2009

A Special Hash

o« BENV

* Contains the environment variables that
your script has access to.

* Keys are the variable names

 Values are the... well... values!
e print $ENV{PATH};

UKUUG
24th November 2009

Input and Output

* Programs become more useful with input
and output

* We'll see more input and output methods
later in the day

* But here are some simple methods

UKUUG
24th November 2009

Output

* The easiest way to get data out of a Perl
program is to use print

e print “Hello world\n”;

UKUUG
24th November 2009

Open Source Consultaney, Development & Training

Input

* The easiest way to get data into a Perl
program is to read from STDIN

e« $input = <STDIN>;

e < ... >isthe “read from filehandle”
operator

* STDIN is the standard input filehandle

UKUUG
24th November 2009

A Complete Example

e #1/Uusr/bin/perl

print 'wWhat 1s your name: ';
$name = <STDIN>,;
print “Hello $name”;

UKUUG
24th November 2009

=10 el

OIS

| T

g—
r
~t

Doar

Operators and Functions

* What are operators and functions?
* “Things” that do “stuff”
* Routines built into Perl to manipulate data

* Other languages have a strong distinction
between operators and functions

- in Perl that distinction can be a bit blurred

* See perlop and perlfunc

UKUUG
24th November 2009

Arithmetic Operators

* Standard arithmetic operations
add (+), subtract (-), multiply (*), divide (/)

* Less standard operations
modulus (%), exponentiation (**)
« $speed = $distance / $time;
« $vol = $length * $breadth * $height;
« $area = $p1 * ($radius ** 2);
« $0odd = $number % 2;

UKUUG
24th November 2009

Shortcut Operators

* Often need to do things like
$total = $total + $amount;

e Can be abbreviated to
$total += $amount;

e Even shorter

$x + 1
$y - 1

$x++; # same as $x += 1 or $x
$y--; # same as $y -= 1 or 3y

e Subtle difference between $x++ and ++$x

UKUUG
24th November 2009

String Operators

* Concaternation (.)

« $name = $firstname . ' ' $surname;
* Repetition (x)
e« $1ine = '-' x 80,

$police = 'hello ' x 3;
e Shortcut versions available
« $page .= $line; # $page = $page . $line
« $thing x= $i; # $thing = $thing x $1i

UKUUG Solutic
24th November 2009

File Test Operators

e Check various attributes of a file

e e $file does the file exist

e -r $fileist

ne fil

e readable

e -w $fileist

UKUUG
24th November 2009

e fi

e writeable

More File Test Operators

e Check various attributes of a file

» -d $file is the file a directory

 -f $file is the file a normal file
« -T $file is a text file
 -B $file is a binary file

UKUUG
24th November 2009

Functions

* Have longer names than operators
* Can take more arguments than operators
* Arguments follow the function name

* See perlfunc for a complete list of Perl's
built-in functions

UKUUG
24th November 2009

Open Source Consultaney, Development & Training

Function Return Values

* Functions can return scalars or lists (or
nothing)
« $age = 29.75;
$years = int($age);
e @1l1st = ('a', 'random',
'collection', 'of',
'words');

@sorted = sort(@list);
a collection of random words

UKUUG
24th November 2009

String Functions

* length returns the length of a string

$len = length $a_string;

* uc and 1c return upper and lower case
versions of a string

$string = 'MiXeD CaSe';
print "$string\n", uc $string,
"\n", 1lc $string;

e See also ucfirst and 1cfirst

UKUUG
24th November 2009

More String Functions

* chop removes the last character from a
string and returns it

e $word = 'word';
$letter = chop $word;

* chomp removes the last character only if it is
a newline and returns true or false
appropriately

UKUUG
24th November 2009

Substrings

* substr returns substrings from a string

« $string = 'Hello world’;
print substr($string, 0, 5);
prints 'Hello'

* You can also assign to a substring

e substr($string, 0, 5) =
'Greetings';
print $string;
prints 'Greetings world'

UKUUG
24th November 2009

Numeric Functions

* abs returns the absolute value

* COS, sin, tan standard trigonometric
functions

* exp exponentiation using e
* log logarithm to base e
* rand returns a random number

* sqrt returns the square root

UKUUG
24th November 2009

Open Source Consultaney, Development & Training

Array Manipulation

* push adds a new element to the end of an
array

« push @array, $value;

 pop removes and returns the last element in
an array

« $value = pop @array;

e shift and unshift do the same for the
start of an array

UKUUG
24th November 2009

Array Manipulation

e sort returns a sorted list

- it does not sort the list in place
@sorted = sort @array;

* sort does a lot more besides, see the docs
(perldoc -1 sort)

* reverse returns a reversed list

@reverse = reverse @array;

UKUUG
24th November 2009

Open Source Consultaney, Development & Training

Arrays and Strings

* join takes an array and returns a string
@array = (1 .. 5);

$string = join ', ', @array;

$string 1s '1, 2, 3, 4, 5

split takes a string and converts it into an
array

$string = '1~2~3~4~5"';
@array = split(/~/, $string);
@array 1s (1, 2, 3, 4, 5)

UKUUG
24th November 2009

Hash Functions

* delete removes a key/value pair from a
hash

* exists tells you if an element exists in a
hash

* keys returns a list of all the keys in a hash

 values returns a list of all the values in a
hash

UKUUG
24th November 2009

Open Source Consultaney, Development & Training

File Operations

* open opens a file and associates it with a
filehandle

« open(my $file, '<', 'in.dat');

* You can then read the file with <$file>

e $line = <$file>; # one line

e @lines = <$file>; # all lines

* Finally, close the file with close

« close($file);

UKUUG
24th November 2009

Other File Functions

* read to read a fixed number of bytes into a
buffer

e $bytes = read(FILE, $buffer, 1024);

* seek to move to a random position in a file
e seek(FILE, 0, 0);

UKUUG
24th November 2009

Other File Functions

* tell to get current file position
« $where = tell FILE;

* truncate to truncate file to given size

e truncate FILE, $where;

UKUUG
24th November 2009

Writing to Files

* Open file in write mode

e open my $file, '>', 'out.dat';
overwrite

« open my $file, '>>', 'out.dat';
append

* Write to file using print

e print $file “some data\n”;

 Note lack of comma

UKUUG
24th November 2009

Time Functions

e time returns the number of seconds since
midnight Jan 1st 1970

e $now = time;
 Jocaltime converts that into more usable
values

($sec, $min, $hour, $mday, $mon,
$year, $wday, $yday, $isdst)
= localtime($now);

UKUUG
24th November 2009

localtime Caveats

e $monisOto 11

* $year is years since 1900
* $wday is 0 (Sun) to 6 (Sat)

UKUUG
24th November 2009

localtime Shortcuts

e Jt's common to use 1localtime on the
current time

« @time_bits = localtime(time),

e Call to time can be omitted
e @time_bits = localtime;

* Use array slices

» ($d, $m, 3y) =
(localtime)[3 .. 5];

UKUUG
24th November 2009

Date & Time Formats

* You can get formatted dates by fiddling the
return values from localtime

e Easier to use strftime (from POSIX.pm)
e Use POSIX 'strftime';

e print strftime('%Y-%m-%d",
localtime);

UKUUG
24th November 2009

Date & Time Formats

* Format followed by list of date/time values

e Format is POSIX standard

- Like UNIX date command
e print strftime('%d %B %y',
localtime);

e print strftime('%H:%M:%S",
localtime);

UKUUG
24th November 2009

Conditional Constructs

e Conditional constructs allow us to choose
different routes of execution through the
program

* This makes for far more interesting
programs

* The unit of program execution is a block of
code

* Blocks are delimited with braces { ... }

UKUUG
24th November 2009

Conditional Constructs

* Conditional blocks are controlled by the
evaluation of an expression to see if it is true
or false

e But what is truth?

UKUUG
24th November 2009

What Is Truth?

* In Perl it's easier to answer the question
"what is false?"

* 0 (the number zero)
* " (the empty string)
* undef (an undefined value)

* () (an empty list)

* Everything else is true

UKUUG
24th November 2009

Comparison Operators

* Compare two values in some way

* Are they equal
- $x == $y or $x eq %y
- $x = $y or $x ne $y
* Is one greater than another
- $x > By or $x gt By
- $x >= Py or $x ge $y

UKUUG
24th November 2009

Comparison Operators

e [s one less than another

- $x < $y or $x 1t By
- $x <= $y or $x le 3By

UKUUG
24th November 2009

Comparison Examples

e 62 > 42 # true

e 'Q' == (3 * 2) - 6 # true

« 'apple' gt 'banana' # false

e« 'apple' == 'banana' # true(!)
e 1 + == '3 bears' # true
el + 3 == 'three' # false

UKUUG
24th November 2009

Boolean Operators

* Combine conditional expressions
« EXPR_1 and EXPR_2

- true if both EXPR 1 and EXPR 2 are true
e EXPR_1 or EXPR 2

- true if either EXPR 1 or EXPR_2 are true
* Alternative syntax && for and and || for or

* Different precedence though

UKUUG
24th November 2009

Short-Circuit Operators

* EXPR_1 or EXPR_2

* Only need to evaluate EXPR_2 if EXPR_1
evaluates as false

e We can use this to make code easier to
follow

« open FILE, 'something.dat'
or die "Can't open file: $!";
e @ARGVY == 2 or print $usage_msg;

UKUUG
24th November 2009

If

 if - our first conditional
. if (EXPR) { BLOCK }

* Only executes BLOCK if EXPR is true

e 1T ($name eq 'Doctor') {
regenerate();
h

UKUUG
24th November 2009

If ... else ...

e if .. else ... -an extended if
. if (EXPR) { BLOCK1l } else { BLOCK2 }

e [f EXPR is true, execute BLOCKI1,
otherwise execute BLOCK?2

« 1T ($name eq 'Doctor') {
regenerate();
} else {
die "Game over!\n";
h

UKUUG
24th November 2009

If ... elsif ... else ...

e 1f .. elsif .. else ..-even more
control
« 1T (EXPR1) { BLOCK1 }

elsif (EXPR2) { BLOCK2 }
else { BLOCKS3 }

UKUUG
24th November 2009

If ... elsif ... else ...

e If EXPRI1 is true,
execute BLOCK1
else if EXPR?2 is true,
execute BLOCK?2
otherwise execute BLOCK3

UKUUG
24th November 2009

If ... elsif ... else ...

* An example

e 1T ($name eq 'Doctor') {

regenerate();

} elsif ($tardis_location

eq $here) {

escape();

} else {
die "Game over!\n";

b

UKUUG
24th November 2009

while

* while - repeat the same code
. while (EXPR) { BLOCK }

* Repeat BLOCK while EXPR is true

e while ($dalek_prisoners) {
print "Ex-ter-min-ate\n";
$dalek_prisoners--;

}

UKUUG
24th November 2009

until

* until - the opposite of while
. until (EXPR) { BLOCK }

e Execute BLOCK until EXPR is true

e until ($regenerations == 12) {
print "Regenerating\n";
regenerate();
$regenerations++;

}

UKUUG
24th November 2009

for

» for - more complex loops
. for (INIT; EXPR; INCR) { BLOCK }

e Like C

* Execute INIT
If EXPR is false, exit loop, otherwise
execute BLOCK, execute INCR and retest
EXPR

UKUUG
24th November 2009

for

* An example

e for ($1 = 1, $1 <= 10; $i++) {
print "$i squared is ",
$i * $i, "\n";
h

* Used surprisingly rarely

UKUUG
24th November 2009

Open Source Consultaney, Development & Training

foreach

» foreach - simpler looping over lists
« foreach VAR (LIST) { BLOCK }

* For each element of LIST, set VAR to equal
the element and execute BLOCK

« foreach $1 (1 .. 10) {
print "$1 squared 1is ",
$l * $l, ll\nll;
h

UKUUG
24th November 2009

foreach

* Another example

e my %months = (Jan => 31, Feb => 28,
Mar => 31, Apr => 30,
May => 31, Jun => 30,
)i
foreach (keys %months) {
print "$_ has $months{$_3} days\n";

}

UKUUG
24th November 2009

Using while Loops

* Taking input from STDIN
« while (<STDIN>) {
print;

¥

e This is the same as

« while (defined($_ = <STDIN>)) {
print $_;

¥

UKUUG
24th November 2009

Breaking Out of Loops

* next —jump to next iteration of loop

* last — jump out of loop

* redo — jump to start of same iteration of
loop

UKUUG
24th November 2009

SUIIGUHANRES

Subroutines

* Self-contained "mini-programs" within your
program

* Make it easy to repeat code

e Subroutines have a name and a block of
code

. sub NAME {
BLOCK
}

UKUUG
24th November 2009

Subroutine Example

e Sub exterminate {
print "Ex-Ter-Min-Ate!!\n";
$timelords--;

}

UKUUG
24th November 2009

Calling a Subroutine

e« &exterminate;
« exterminate();
e exterminate;

* last one only works if function has been
predeclared

UKUUG
24th November 2009

Subroutine Arguments

* Functions become far more useful if you can
pass arguments to them

« exterminate('The Doctor');

* Arguments end up in the @_ array within the
function

UKUUG
24th November 2009

Subroutine Arguments

e Sub exterminate {
my ($name) = @_;
print "Ex-Ter-Min-Ate $name\n";
$timelords--;

}

UKUUG
24th November 2009

Multiple Arguments

 As @_ is an array it can contain multiple
arguments

e Sub exterminate {
foreach (@_) {
print "Ex-Ter-Min-Ate $_\n";

/4

$timelords--;

¥
¥

UKUUG
24th November 2009

Calling Subroutines

* A subtle difference between &my_sub and
my_sub ()

* &my_sub passes on the contents of @_ to the
called subroutine

e« sub first { &second };
sub second { print @_ };
first('some', 'random', 'data'),

* You usually don't want to do that

UKUUG
24th November 2009

By Value or Reference

* Passing by value passes the value of the
variable into the subroutine. Changing the
argument doesn't alter the external variable

* Passing by reference passes the actual
variable. Changing the argument alters the
external value

* Perl allows you to choose

UKUUG
24th November 2009

Pass By Value

* Simulating pass by value
e my ($argl, $arg2) = @_;

e Updating $argl and $arg2 doesn’t effect
anything outside the subroutine

UKUUG
24th November 2009

Pass By Reference

* Simulating pass by reference
e $_[0] = 'whatever';

e Updating the contents of @_ updates the
external values

UKUUG
24th November 2009

Returning Values

e Use return to return a value from a
subroutine

e sub exterminate {

if (rand > .25) {
print "Ex-Ter-Min-Ate $_[O0]\n";
$timelords--;
return 1;

} else {
return;

h

}

UKUUG
24th November 2009

Open Source Consultaney, Development & Training

Returning a List

e Subroutines can return lists

e sub exterminate {
my @exterminated;
foreach (@_) {
if (rand > .25) {
print "Ex-Ter-Min-Ate $_\n";
$timelords--;
push @exterminated, $_;

}
}

return @exterminated;

}

UKUUG
24th November 2009

Open Source Consultaney, Development & Training

Regular Expressions

* Patterns that match strings
* A bit like wild-cards
* A “mini-language” within Perl
- Alien DNA
* The key to Perl's text processing power
* Sometimes overused!

* Documented in perldoc perlre

UKUUG
24th November 2009

Match Operator

« m/PATTERN/ - the match operator
* Works on $__ by default

e In scalar context returns true if the match
succeeds

* In list context returns list of "captured" text
* m is optional if you use / characters

* With m you can use any delimiters

UKUUG
24th November 2009

Match Examples

« while (<FILE>) {

orint if /foo/;
orint 1if /bar/1i;
orint if m|http://]|;

UKUUG
24th November 2009

Substitutions

* S/PATTERN/REPLACEMENT/ - the
substitution operator

* Works on $_ by default

 In scalar context returns true if substitution
succeeds

e In list context returns number of
replacements

* Can choose any delimiter

UKUUG
24th November 2009

Substitution Examples

« while (<FILE>) {
s/teh/the/gi;
s/freind/friend/g1i;
s/sholud/should/g1i;
print;

}

UKUUG
24th November 2009

Binding Operator

e If we wantm// or s/// to work on
something other than $_ then we need to use
the binding operator

« $name =~ s/Dave/David/;

UKUUG
24th November 2009

Metacharacters

* Matching something other than literal text

A - matches start of string

e $ - matc

hes end of string

e . - matc

hes any character (except \n)

* \s - matches a whitespace character

* \S - matches a non-whitespace character

UKUUG
24th November 2009

More Metacharacters

* \d - matches any digit

* \D - matches any non-digit

* \w - matches any "word" character

* \W - matches any "non-word" character

* \b - matches a word boundary

* \B - matches anywhere except a word
boundary

UKUUG
24th November 2009

Metacharacter Examples

« while (<FILE>) {

orint 1f m|Ahttp];
orint if /\bperl\b/;
orint if /\S/;

orint it /\$\d\.\d\d/;

UKUUG
24th November 2009

Quantifiers

* Specify the number of occurrences
e ? - match zero or one

e * - match zero or more

* + - match one or more

* {n} - match exactly n

* {n, } - match n or more

* {n, m} - match between n and m

UKUUG
24th November 2009

Quantifier Examples

« while (<FILE>) {

orint 1f /whiske?y/1;
orint if /so+n/;

orint if /\d*\.\d+/;
orint 1f /\bA\w{3}\b/;

UKUUG
24th November 2009

Character Classes

 Define a class of characters to match
« /[aeliou]/ # match any vowel

* Use - to define a contiguous range
e /[A-Z]/ # match upper case letters

e Use A to match inverse set
« /[NA-Za-z] # match non-letters

UKUUG
24th November 2009

Alternation

* Use | to match one of a set of options
« /rose|marthaldonna/i;

* Use parentheses for grouping
e /AN(rose|marthaldonna)$/1i;

UKUUG
24th November 2009

Capturing Matches

* Parentheses are also used to capture parts of
the matched string

e The captured parts are in $1, $2, etc...

« while (<FILE>) {
if (/A(\w+)\s+(\w+)/) {
print "The first word was $1\n";
print "The second word was $2";

}
}

UKUUG
24th November 2009

Returning Captures

* Captured values are also returned if the
match operator is used in list context
e my @nums = $text =~ /(\d+)/g;

print "I found these integers:\n";
print "@nums\n";

UKUUG
24th November 2009

More Information

* perldoc perlre

* perldoc perlretut

* Mastering Regular Expressions — Jeffrey
Freidl

UKUUG
24th November 2009

fle

1= 1

—
C)

-1

]

|

(Y

e)Y

Ifglc

—l
=)

Smart Matching

e Introduced in Perl 5.10

* Powerful matching operator
* DWIM
* Examines operands

* Decides which match to apply

UKUUG
24th November 2009

Smart Match Operator

.]

* New operator

* Looks a bit like the binding operator (=~)

* Can be used in place of it
« $some_text =~ /some regex/

* Can be replaced with
« $some_text ~~ /some regex/

UKUUG
24th November 2009

Smarter Matching

* If one of its operands is a regex
 ~~ does a regex match

* Cleverer than that though
« %hash ~~ /regex/

* Regex match on hash keys
e @array ~~ /regex/

* Regex match on array elements .

UKUUG
24th November 2009

More Smart Matches

e @arrayl ~~ @array?2
* Checks that arrays are the same

« $scalar ~~ @array

* Checks scalar exists in array
e $scalar ~~ %hash

* Checks scalar is a hash key

UKUUG
24th November 2009

Smart Scalar Matches

* What kind of match does this do?
« $scalarl ~~ $scalar?

* It depends

* If both look like numbers

e ~~ acts like ==

* Otherwise

 ~~ acts like eq

UKUUG
24th November 2009

Flricllrie) =gl
Irie) Mocilas

Us

Modules

A module is a reusuable 'chunk' of code

* Perl comes with over 100 modules
(see “perldoc perlmodlib” for list)

* Perl has a repository of freely-available

modules - the Comprehensive Perl Archive
Network (CPAN)

- http://www.cpan.org

- http://search.cpan.or
UKUUG p p g
24th November 2009

Finding Modules

* http://search.cpan.org
* Search by:

- module name
— distribution name

- author name

e Note: CPAN also contains newer versions of
standard modules

UKUUG
24th November 2009

Open Source Consultaney, Development & Training

Installing Modules
(The Hard Way)

* Download distribution file
- MyModule-X.XX.tar.gz
* Unzip
- $ gunzip MyModule-X.XX.tar.gz

* Untar
- $ tar xvf MyModule-X.XX.tar

* Change directory
- $ cd MyModule-X.XX

UKUUG
24th November 2009

Installing Modules
(The Hard Way)

* Create Maketfile
- $ perl Makefile.PL

e Build Module
- $ make

e Test Build
- $ make test

e Install Module
- $ make install

UKUUG
24th November 2009

Installing Modules
(The Hard Way)

e Note: May need root permissions for make
install

* You can have your own personal module
library

« perl Makefile.PL PREFIX=~/perl
- need to adjust @INC

UKUUG
24th November 2009

Installing Modules
(The Easy Way)

* CPANPLUS.pm is included with newer
Perls

* Automatically carries out installation
process

* Can also handle required modules

UKUUG
24th November 2009

Installing Modules
(The Easy Way)

* May not work (or may need some
configuration) through a firewall

* May still need to be root

- Can use 'sudo'

UKUUG
24th November 2009

Installing Modules
(The Easy Way)

¢ Cpanp
[... some stuff ...]
CPAN Terminal> install Some: :Module
[... some more stuff ... |
CPAN Terminal> quit

* Or

e Cpanp -1 Some::Module

UKUUG
24th November 2009

Using Modules

* Two types of module:
- Functions vs Objects

* Functional modules export new subroutines
and variables into your program

* Object modules usually don't

* Difference not clear cut (e.g. CGIL.pm)

UKUUG
24th November 2009

Using Functional Modules

* Import defaults:
e Use My: :Module;
* Import optional components:

e USse My::Module gw(my_sub
@my_arr);

UKUUG
24th November 2009

Using Functional Modules

* Import defined sets of components:
e Use My:Module qgw(:advanced);

* Use imported components:
« $data = my_sub(@my_arr);

UKUUG
24th November 2009

Using ODbject Modules

* Use the module:

e USse My::0Object;

* Create an object:

« $0bj = My::0bject->new;
- Note: new is just a convention

* Interact using object's methods

e $obj->set_name($name);

UKUUG
24th November 2009

Useful Standard Modules

* constant

e Time::I.ocal

e Text::ParseWords
* Getopt::Std
e Cwd

e File::Basename

UKUUG
24th November 2009

File::Copy
POSIX
CGI

Carp

Benchmark

Data::Dumper

Useful Non-Standard

Modules
* Template * LWP
* DBI * WWW::Mechanize
* DBIx::Class * Email::Simple
* DateTime e XML::LibXML
e HTML::Parser * XML::Feed
* HTML::Tidy * Moose

UKUUG
24th November 2009

ERASEANIREOIKS

* Any Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Finding Modules
	Installing Modules (Hard Way)
	Slide 141
	Slide 142
	Installing Modules (Easy Way)
	Slide 144
	Slide 145
	Using Modules
	Using Functional Modules
	Slide 148
	Using Object Modules
	Useful Standard Modules
	Slide 151
	Slide 152

