

IntroductionIntroduction
to Perlto Perl

Dave Cross
Magnum Solutions Ltd

dave@mag-sol.com

UKUUG
24th November 2009

2

What We Will Cover

 What is Perl?
 Creating and running a Perl program
 Getting help
 Input and Output
 Perl variables
 Operators and Functions

UKUUG
24th November 2009

3

What We Will Cover
 Conditional Constructs
 Subroutines
 Regular Expressions
 Smart Matching
 Finding and using Modules

UKUUG
24th November 2009

4

Schedule

 09:45 – Begin
 11:15 – Coffee break (15 mins)
 13:00 – Lunch (60 mins)
 14:00 – Begin
 15:30 – Coffee break (15 mins)
 17:00 – End

UKUUG
24th November 2009

5

Resources

 Slides available on-line
− http://mag-sol.com/train/public/2009-11/ukuug

 Also see Slideshare
− http://www.slideshare.net/davorg/slideshows

 Get Satisfaction
− http://getsatisfaction.com/magnum

What is Perl?What is Perl?

UKUUG
24th November 2009

7

Perl's Name

 Practical Extraction and Reporting
Language

 Pathologically Eclectic Rubbish Lister
 “Perl” is the language
 “perl” is the compiler
 Never “PERL”

UKUUG
24th November 2009

8

Typical Uses of Perl

 Text processing
 System administration tasks
 CGI and web programming
 Database interaction
 Other Internet programming

UKUUG
24th November 2009

9

Less Typical Uses of Perl
 Human Genome Project
 NASA

UKUUG
24th November 2009

10

What is Perl Like?

 General purpose programming language
 Free (open source)
 Fast
 Flexible
 Secure
 Fun

UKUUG
24th November 2009

11

The Perl Philosophy

 There's more than one way to do it
 Three virtues of a programmer

− Laziness

− Impatience

− Hubris

 Share and enjoy!

Creating and Creating and
Running aRunning a

Perl ProgramPerl Program

UKUUG
24th November 2009

13

Creating a Perl Program

 Our first Perl program
 print "Hello world\n";

 Put this in a file called hello.pl

UKUUG
24th November 2009

14

Running a Perl Program

 Running a Perl program from the command
line

 $ perl hello.pl

UKUUG
24th November 2009

15

Running a Perl Program

 The "shebang" line (Unix, not Perl)
 #!/usr/bin/perl

 Make program executable
 $ chmod +x hello.pl

 Run from command line
 $./hello.pl

UKUUG
24th November 2009

16

Perl Comments

 Add comments to your code
 Start with a hash (#)
 Continue to end of line
 # This is a hello world program
print "Hello, world!\n"; # print

UKUUG
24th November 2009

17

Command Line Options

 Options to control execution of the program
 For example, -w turns on warnings
 Use on command line
 perl -w hello.pl

 Or on shebang line
 #!/usr/bin/perl -w

 More usually use warnings

Getting HelpGetting Help

UKUUG
24th November 2009

19

Perl Documentation

 Perl comes with a huge amount of
documentation

 Accessed through the perldoc command
 perldoc perl

 perldoc perltoc – table of contents

 Also online at http://perldoc.perl.org/
 Lots of references through the course

UKUUG
24th November 2009

20

Some Useful Pages

 perlintro
 perldata
 perlsyn
 perlfaq
 perlstyle
 perlcheat
 Many many more

Perl VariablesPerl Variables

UKUUG
24th November 2009

22

What is a Variable?

 A place where we can store data
 A variable needs a name

− To put new data in it

− To retrieve the data stored in it

UKUUG
24th November 2009

23

Variable Names

 Contain alphanumeric characters and
underscores

 User variable names may not start with
numbers

 Variable names are preceded by a
punctuation mark indicating the type of data

UKUUG
24th November 2009

24

Types of Perl Variable

 Different types of variables start with a
different symbol

− Scalar variables start with $

− Array variables start with @

− Hash variables start with %

 More on these types soon

UKUUG
24th November 2009

25

Declaring Variables

 You don't need to declare variables in Perl
 But it's a very good idea

− typos
− scoping

 Using the strict pragma
 use strict;
my $var;

UKUUG
24th November 2009

26

Scalar Variables

 Store a single item of data
 my $name = "Arthur";

 my $whoami =
 'Just Another Perl Hacker';

 my $meaning_of_life = 42;

 my $number_less_than_1 = 0.000001;

 my $very_large_number = 3.27e17;
3.27 times 10 to the power of 17

UKUUG
24th November 2009

27

Type Conversions

 Perl converts between strings and numbers
whenever necessary

 Add int to a floating point number
 my $sum = $meaning_of_life +
 $number_less_than_1;

 Putting a number into a string
 print "$name says, 'The meaning
of life is $sum.'\n";

UKUUG
24th November 2009

28

Quoting Strings
 Single quotes don't expand variables or

escape sequences
 my $price = '$9.95';

 Double quotes do
 my $invline =
 "24 widgets @ $price each\n";

UKUUG
24th November 2009

29

Backslashes
 Use a backslash to escape special characters

in double quoted strings
 print "He said \"The price is
\$300\"";

 This can look ugly

UKUUG
24th November 2009

30

Better Quotes

 This is a tidier alternative
 print qq(He said "The price is
\$300");

 Also works for single quotes
 print q(He said "That's too
expensive");

UKUUG
24th November 2009

31

Undefined Values
 A scalar variable that hasn't had data put into

it will contain the special value “undef”
 Test for it with defined() function
 if (defined($my_var)) { ... }

UKUUG
24th November 2009

32

Array Variables
 Arrays contain an ordered list of scalar

values
 my @fruit = ('apples', 'oranges',
 'guavas', 'passionfruit',
 'grapes');

 my @magic_numbers = (23, 42, 69);

 my @random_scalars = ('mumble', 123.45,
 'dave cross',
 -300, $name);

UKUUG
24th November 2009

33

Array Elements
 Accessing individual elements of an array
 print $fruits[0];
prints "apples"

 Note: Indexes start from zero
 print $random_scalars[2];
prints "dave cross"

 Note use of $ as individual element of an
array is a scalar

UKUUG
24th November 2009

34

Array Slices
 Returns a list of elements from an array
 print @fruits[0,2,4];
prints "apples", "guavas",
"grapes"

 print @fruits[1 .. 3];
prints "oranges", "guavas",
"passionfruit"

 Note use of @ as we are accessing more
than one element of the array

UKUUG
24th November 2009

35

Setting Array Values
 $array[4] = 'something';

 $array[400] = 'something else';

 Also with slices
 @array[4, 7 .. 9] = ('four','seven',
 'eight','nine');

 @array[1, 2] = @array[2, 1];

 Doesn't need to be an array
− ($x, $y) = ($y, $x);

UKUUG
24th November 2009

36

Array Size
 $#array is the index of the last element in
@array

 Therefore $#array + 1 is the number of
elements

 $count = @array;

 Does the same thing and is easier to
understand

UKUUG
24th November 2009

37

Hash Variables
 Hashes implement “look-up tables” or

“dictionaries”
 Initialised with a list
 %french = ('one', 'un',
 'two', 'deux',
 'three', 'trois');

UKUUG
24th November 2009

38

Fat Comma
 The “fat comma” (=>) is easier to

understand
 %german = (one => 'ein',
 two => 'zwei',
 three => 'drei');

UKUUG
24th November 2009

39

Accessing Hash Values

 $three = $french{three};

 print $german{two};

 As with arrays, notice the use of $ to
indicate that we're accessing a single value

UKUUG
24th November 2009

40

Hash Slices
 Just like array slices
 Returns a list of elements from a hash
 print
@french{'one','two','three'};
prints "un", "deux" & "trois"

 Again, note use of @ as we are accessing
more than one value from the hash

UKUUG
24th November 2009

41

Setting Hash Values

 $hash{foo} = 'something';

 $hash{bar} = 'something else';

 Also with slices
 @hash{'foo', 'bar'} =
 ('something', 'else');

 @hash{'foo', 'bar'} =
 @hash{'bar', 'foo'};

UKUUG
24th November 2009

42

More About Hashes

 Hashes are not sorted
 There is no equivalent to $#array

 print %hash is unhelpful

 We'll see ways round these restrictions later

UKUUG
24th November 2009

43

Special Perl Variables

 Perl has many special variables
 Many of them have punctuation marks as

names
 Others have names in ALL_CAPS
 They are documented in perlvar

UKUUG
24th November 2009

44

The Default Variable

 Many Perl operations either set $_ or use its
value if no other is given

 print; # prints the value of $_

 If a piece of Perl code seems to be missing a
variable, then it's probably using $_

 Think of “it” or “that” in English

UKUUG
24th November 2009

45

Using $_
 while (<FILE>) {
 if (/regex/) {
 print;
 }
}

 Three uses of $_

UKUUG
24th November 2009

46

A Special Array

 @ARGV

 Contains your programs command line
arguments

 my $num = @ARGV;
print "$num arguments: @ARGV\n";

 perl printargs.pl foo bar baz

UKUUG
24th November 2009

47

A Special Hash

 %ENV

 Contains the environment variables that
your script has access to.

 Keys are the variable names
 Values are the… well… values!
 print $ENV{PATH};

Input and OutputInput and Output

UKUUG
24th November 2009

49

Input and Output

 Programs become more useful with input
and output

 We'll see more input and output methods
later in the day

 But here are some simple methods

UKUUG
24th November 2009

50

Output

 The easiest way to get data out of a Perl
program is to use print

 print “Hello world\n”;

UKUUG
24th November 2009

51

Input

 The easiest way to get data into a Perl
program is to read from STDIN

 $input = <STDIN>;

 < ... > is the “read from filehandle”
operator

 STDIN is the standard input filehandle

UKUUG
24th November 2009

52

A Complete Example

 #!/usr/bin/perl

print 'What is your name: ';
$name = <STDIN>;
print “Hello $name”;

Operators and Operators and

FunctionsFunctions

UKUUG
24th November 2009

54

Operators and Functions

 What are operators and functions?
 “Things” that do “stuff”
 Routines built into Perl to manipulate data
 Other languages have a strong distinction

between operators and functions
− in Perl that distinction can be a bit blurred

 See perlop and perlfunc

UKUUG
24th November 2009

55

Arithmetic Operators
 Standard arithmetic operations

add (+), subtract (-), multiply (*), divide (/)
 Less standard operations

modulus (%), exponentiation (**)
 $speed = $distance / $time;

 $vol = $length * $breadth * $height;

 $area = $pi * ($radius ** 2);

 $odd = $number % 2;

UKUUG
24th November 2009

56

Shortcut Operators
 Often need to do things like

$total = $total + $amount;

 Can be abbreviated to

$total += $amount;

 Even shorter
$x++; # same as $x += 1 or $x = $x + 1
$y--; # same as $y -= 1 or $y = $y - 1

 Subtle difference between $x++ and ++$x

UKUUG
24th November 2009

57

String Operators
 Concaternation (.)
 $name = $firstname . ' ' $surname;

 Repetition (x)
 $line = '-' x 80;
$police = 'hello ' x 3;

 Shortcut versions available
 $page .= $line; # $page = $page . $line

 $thing x= $i; # $thing = $thing x $i

UKUUG
24th November 2009

58

File Test Operators
 Check various attributes of a file
 -e $file does the file exist

 -r $file is the file readable

 -w $file is the file writeable

UKUUG
24th November 2009

59

More File Test Operators
 Check various attributes of a file
 -d $file is the file a directory

 -f $file is the file a normal file

 -T $file is a text file

 -B $file is a binary file

UKUUG
24th November 2009

60

Functions
 Have longer names than operators
 Can take more arguments than operators
 Arguments follow the function name
 See perlfunc for a complete list of Perl's

built-in functions

UKUUG
24th November 2009

61

Function Return Values
 Functions can return scalars or lists (or

nothing)
 $age = 29.75;
$years = int($age);

 @list = ('a', 'random',
 'collection', 'of',
 'words');
@sorted = sort(@list);
a collection of random words

UKUUG
24th November 2009

62

String Functions
 length returns the length of a string
 $len = length $a_string;

 uc and lc return upper and lower case
versions of a string

 $string = 'MiXeD CaSe';
print "$string\n", uc $string,
 "\n", lc $string;

 See also ucfirst and lcfirst

UKUUG
24th November 2009

63

More String Functions
 chop removes the last character from a

string and returns it
 $word = 'word';
$letter = chop $word;

 chomp removes the last character only if it is
a newline and returns true or false
appropriately

UKUUG
24th November 2009

64

Substrings
 substr returns substrings from a string
 $string = 'Hello world';
print substr($string, 0, 5);
 # prints 'Hello'

 You can also assign to a substring
 substr($string, 0, 5) =
 'Greetings';
print $string;
prints 'Greetings world'

UKUUG
24th November 2009

65

Numeric Functions
 abs returns the absolute value

 cos, sin, tan standard trigonometric
functions

 exp exponentiation using e

 log logarithm to base e

 rand returns a random number

 sqrt returns the square root

UKUUG
24th November 2009

66

Array Manipulation
 push adds a new element to the end of an

array
 push @array, $value;

 pop removes and returns the last element in
an array

 $value = pop @array;

 shift and unshift do the same for the
start of an array

UKUUG
24th November 2009

67

Array Manipulation
 sort returns a sorted list

− it does not sort the list in place
 @sorted = sort @array;

 sort does a lot more besides, see the docs
(perldoc -f sort)

 reverse returns a reversed list
 @reverse = reverse @array;

UKUUG
24th November 2009

68

Arrays and Strings
 join takes an array and returns a string
 @array = (1 .. 5);
$string = join ', ', @array;
$string is '1, 2, 3, 4, 5'

 split takes a string and converts it into an
array

 $string = '1~2~3~4~5';
@array = split(/~/, $string);
@array is (1, 2, 3, 4, 5)

UKUUG
24th November 2009

69

Hash Functions
 delete removes a key/value pair from a

hash
 exists tells you if an element exists in a

hash
 keys returns a list of all the keys in a hash

 values returns a list of all the values in a
hash

UKUUG
24th November 2009

70

File Operations
 open opens a file and associates it with a

filehandle
 open(my $file, '<', 'in.dat');

 You can then read the file with <$file>
 $line = <$file>; # one line

 @lines = <$file>; # all lines

 Finally, close the file with close
 close($file);

UKUUG
24th November 2009

71

Other File Functions
 read to read a fixed number of bytes into a

buffer
 $bytes = read(FILE, $buffer, 1024);

 seek to move to a random position in a file
 seek(FILE, 0, 0);

UKUUG
24th November 2009

72

Other File Functions
 tell to get current file position
 $where = tell FILE;

 truncate to truncate file to given size
 truncate FILE, $where;

UKUUG
24th November 2009

73

Writing to Files

 Open file in write mode
 open my $file, '>', 'out.dat';
overwrite

 open my $file, '>>', 'out.dat';
append

 Write to file using print
 print $file “some data\n”;

 Note lack of comma

UKUUG
24th November 2009

74

Time Functions
 time returns the number of seconds since

midnight Jan 1st 1970
 $now = time;

 localtime converts that into more usable
values

 ($sec, $min, $hour, $mday, $mon,
 $year, $wday, $yday, $isdst)
 = localtime($now);

UKUUG
24th November 2009

75

localtime Caveats

 $mon is 0 to 11

 $year is years since 1900

 $wday is 0 (Sun) to 6 (Sat)

UKUUG
24th November 2009

76

localtime Shortcuts
 It's common to use localtime on the

current time
 @time_bits = localtime(time);

 Call to time can be omitted
 @time_bits = localtime;

 Use array slices
 ($d, $m, $y) =
 (localtime)[3 .. 5];

UKUUG
24th November 2009

77

Date & Time Formats

 You can get formatted dates by fiddling the
return values from localtime

 Easier to use strftime (from POSIX.pm)
 use POSIX 'strftime';

 print strftime('%Y-%m-%d',
 localtime);

UKUUG
24th November 2009

78

Date & Time Formats
 Format followed by list of date/time values
 Format is POSIX standard

− Like UNIX date command
 print strftime('%d %B %y',
 localtime);

 print strftime('%H:%M:%S',
 localtime);

Conditional Conditional

ConstructsConstructs

UKUUG
24th November 2009

80

Conditional Constructs
 Conditional constructs allow us to choose

different routes of execution through the
program

 This makes for far more interesting
programs

 The unit of program execution is a block of
code

 Blocks are delimited with braces { … }

UKUUG
24th November 2009

81

Conditional Constructs

 Conditional blocks are controlled by the
evaluation of an expression to see if it is true
or false

 But what is truth?

UKUUG
24th November 2009

82

What is Truth?

 In Perl it's easier to answer the question
"what is false?"

 0 (the number zero)
 '' (the empty string)
 undef (an undefined value)
 () (an empty list)
 Everything else is true

UKUUG
24th November 2009

83

Comparison Operators

 Compare two values in some way
 Are they equal

− $x == $y or $x eq $y

− $x != $y or $x ne $y

 Is one greater than another
− $x > $y or $x gt $y

− $x >= $y or $x ge $y

UKUUG
24th November 2009

84

Comparison Operators

 Is one less than another
− $x < $y or $x lt $y

− $x <= $y or $x le $y

UKUUG
24th November 2009

85

Comparison Examples

 62 > 42 # true

 '0' == (3 * 2) - 6 # true

 'apple' gt 'banana' # false

 'apple' == 'banana' # true(!)

 1 + 2 == '3 bears' # true

 1 + 3 == 'three' # false

UKUUG
24th November 2009

86

Boolean Operators
 Combine conditional expressions
 EXPR_1 and EXPR_2

− true if both EXPR_1 and EXPR_2 are true
 EXPR_1 or EXPR_2

− true if either EXPR_1 or _EXPR_2 are true

 Alternative syntax && for and and || for or
 Different precedence though

UKUUG
24th November 2009

87

Short-Circuit Operators
 EXPR_1 or EXPR_2
 Only need to evaluate EXPR_2 if EXPR_1

evaluates as false
 We can use this to make code easier to

follow
 open FILE, 'something.dat'
 or die "Can't open file: $!";

 @ARGV == 2 or print $usage_msg;

UKUUG
24th November 2009

88

if

 if - our first conditional
 if (EXPR) { BLOCK }

 Only executes BLOCK if EXPR is true
 if ($name eq 'Doctor') {
 regenerate();
}

UKUUG
24th November 2009

89

if ... else ...
 if … else ... - an extended if
 if (EXPR) { BLOCK1 } else { BLOCK2 }

 If EXPR is true, execute BLOCK1,
otherwise execute BLOCK2

 if ($name eq 'Doctor') {
 regenerate();
} else {
 die "Game over!\n";
}

UKUUG
24th November 2009

90

if ... elsif ... else ...

 if … elsif … else … - even more
control

 if (EXPR1) { BLOCK1 }
elsif (EXPR2) { BLOCK2 }
else { BLOCK3 }

UKUUG
24th November 2009

91

if ... elsif ... else ...

 If EXPR1 is true,
execute BLOCK1
else if EXPR2 is true,
execute BLOCK2
otherwise execute BLOCK3

UKUUG
24th November 2009

92

if ... elsif ... else ...

 An example
 if ($name eq 'Doctor') {
 regenerate();
} elsif ($tardis_location
 eq $here) {
 escape();
} else {
 die "Game over!\n";
}

UKUUG
24th November 2009

93

while

 while - repeat the same code
 while (EXPR) { BLOCK }

 Repeat BLOCK while EXPR is true
 while ($dalek_prisoners) {
 print "Ex-ter-min-ate\n";
 $dalek_prisoners--;
}

UKUUG
24th November 2009

94

until

 until - the opposite of while
 until (EXPR) { BLOCK }

 Execute BLOCK until EXPR is true
 until ($regenerations == 12) {
 print "Regenerating\n";
 regenerate();
 $regenerations++;
}

UKUUG
24th November 2009

95

for

 for - more complex loops
 for (INIT; EXPR; INCR) { BLOCK }

 Like C
 Execute INIT

If EXPR is false, exit loop, otherwise
execute BLOCK, execute INCR and retest
EXPR

UKUUG
24th November 2009

96

for

 An example
 for ($i = 1; $i <= 10; $i++) {
 print "$i squared is ",
 $i * $i, "\n";
}

 Used surprisingly rarely

UKUUG
24th November 2009

97

foreach

 foreach - simpler looping over lists
 foreach VAR (LIST) { BLOCK }

 For each element of LIST, set VAR to equal
the element and execute BLOCK

 foreach $i (1 .. 10) {
 print "$i squared is ",
 $i * $i, "\n";
}

UKUUG
24th November 2009

98

foreach

 Another example
 my %months = (Jan => 31, Feb => 28,
 Mar => 31, Apr => 30,
 May => 31, Jun => 30,
 …);
foreach (keys %months) {
 print "$_ has $months{$_} days\n";
}

UKUUG
24th November 2009

99

Using while Loops

 Taking input from STDIN
 while (<STDIN>) {
 print;
}

 This is the same as
 while (defined($_ = <STDIN>)) {
 print $_;
}

UKUUG
24th November 2009

100

Breaking Out of Loops

 next – jump to next iteration of loop

 last – jump out of loop

 redo – jump to start of same iteration of
loop

SubroutinesSubroutines

UKUUG
24th November 2009

102

Subroutines
 Self-contained "mini-programs" within your

program
 Make it easy to repeat code
 Subroutines have a name and a block of

code
 sub NAME {
 BLOCK
}

UKUUG
24th November 2009

103

Subroutine Example

 sub exterminate {
 print "Ex-Ter-Min-Ate!!\n";
 $timelords--;
}

UKUUG
24th November 2009

104

Calling a Subroutine

 &exterminate;

 exterminate();

 exterminate;

 last one only works if function has been
predeclared

UKUUG
24th November 2009

105

Subroutine Arguments
 Functions become far more useful if you can

pass arguments to them
 exterminate('The Doctor');

 Arguments end up in the @_ array within the
function

UKUUG
24th November 2009

106

Subroutine Arguments
 sub exterminate {
 my ($name) = @_;
 print "Ex-Ter-Min-Ate $name\n";
 $timelords--;
}

UKUUG
24th November 2009

107

Multiple Arguments

 As @_ is an array it can contain multiple
arguments

 sub exterminate {
 foreach (@_) {
 print "Ex-Ter-Min-Ate $_\n";
 $timelords--;
 }
}

UKUUG
24th November 2009

108

Calling Subroutines

 A subtle difference between &my_sub and
my_sub()

 &my_sub passes on the contents of @_ to the
called subroutine

 sub first { &second };
sub second { print @_ };
first('some', 'random', 'data');

 You usually don't want to do that

UKUUG
24th November 2009

109

By Value or Reference

 Passing by value passes the value of the
variable into the subroutine. Changing the
argument doesn't alter the external variable

 Passing by reference passes the actual
variable. Changing the argument alters the
external value

 Perl allows you to choose

UKUUG
24th November 2009

110

Pass By Value

 Simulating pass by value
 my ($arg1, $arg2) = @_;

 Updating $arg1 and $arg2 doesn’t effect
anything outside the subroutine

UKUUG
24th November 2009

111

Pass By Reference

 Simulating pass by reference
 $_[0] = 'whatever';

 Updating the contents of @_ updates the
external values

UKUUG
24th November 2009

112

Returning Values
 Use return to return a value from a

subroutine
 sub exterminate {
 if (rand > .25) {
 print "Ex-Ter-Min-Ate $_[0]\n";
 $timelords--;
 return 1;
 } else {
 return;
 }
}

UKUUG
24th November 2009

113

Returning a List
 Subroutines can return lists
 sub exterminate {
 my @exterminated;
 foreach (@_) {
 if (rand > .25) {
 print "Ex-Ter-Min-Ate $_\n";
 $timelords--;
 push @exterminated, $_;
 }
 }
 return @exterminated;
}

Regular Regular
ExpressionsExpressions

UKUUG
24th November 2009

115

Regular Expressions
 Patterns that match strings
 A bit like wild-cards
 A “mini-language” within Perl

− Alien DNA

 The key to Perl's text processing power
 Sometimes overused!
 Documented in perldoc perlre

UKUUG
24th November 2009

116

Match Operator
 m/PATTERN/ - the match operator

 Works on $_ by default

 In scalar context returns true if the match
succeeds

 In list context returns list of "captured" text
 m is optional if you use / characters
 With m you can use any delimiters

UKUUG
24th November 2009

117

Match Examples

 while (<FILE>) {
 print if /foo/;
 print if /bar/i;
 print if m|http://|;
}

UKUUG
24th November 2009

118

Substitutions
 s/PATTERN/REPLACEMENT/ - the

substitution operator
 Works on $_ by default

 In scalar context returns true if substitution
succeeds

 In list context returns number of
replacements

 Can choose any delimiter

UKUUG
24th November 2009

119

Substitution Examples

 while (<FILE>) {
 s/teh/the/gi;
 s/freind/friend/gi;
 s/sholud/should/gi;
 print;
}

UKUUG
24th November 2009

120

Binding Operator

 If we want m// or s/// to work on
something other than $_ then we need to use
the binding operator

 $name =~ s/Dave/David/;

UKUUG
24th November 2009

121

Metacharacters

 Matching something other than literal text
 ^ - matches start of string

 $ - matches end of string

 . - matches any character (except \n)

 \s - matches a whitespace character

 \S - matches a non-whitespace character

UKUUG
24th November 2009

122

More Metacharacters

 \d - matches any digit

 \D - matches any non-digit

 \w - matches any "word" character

 \W - matches any "non-word" character

 \b - matches a word boundary

 \B - matches anywhere except a word
boundary

UKUUG
24th November 2009

123

Metacharacter Examples

 while (<FILE>) {
 print if m|^http|;
 print if /\bperl\b/;
 print if /\S/;
 print if /\$\d\.\d\d/;
}

UKUUG
24th November 2009

124

Quantifiers
 Specify the number of occurrences
 ? - match zero or one

 * - match zero or more

 + - match one or more

 {n} - match exactly n

 {n,} - match n or more

 {n,m} - match between n and m

UKUUG
24th November 2009

125

Quantifier Examples

 while (<FILE>) {
 print if /whiske?y/i;
 print if /so+n/;
 print if /\d*\.\d+/;
 print if /\bA\w{3}\b/;
}

UKUUG
24th November 2009

126

Character Classes

 Define a class of characters to match
 /[aeiou]/ # match any vowel

 Use - to define a contiguous range
 /[A-Z]/ # match upper case letters

 Use ^ to match inverse set
 /[^A-Za-z] # match non-letters

UKUUG
24th November 2009

127

Alternation

 Use | to match one of a set of options
 /rose|martha|donna/i;

 Use parentheses for grouping
 /^(rose|martha|donna)$/i;

UKUUG
24th November 2009

128

Capturing Matches

 Parentheses are also used to capture parts of
the matched string

 The captured parts are in $1, $2, etc…
 while (<FILE>) {
 if (/^(\w+)\s+(\w+)/) {
 print "The first word was $1\n";
 print "The second word was $2";
 }
}

UKUUG
24th November 2009

129

Returning Captures

 Captured values are also returned if the
match operator is used in list context

 my @nums = $text =~ /(\d+)/g;
print "I found these integers:\n";
print "@nums\n";

UKUUG
24th November 2009

130

More Information

 perldoc perlre
 perldoc perlretut
 Mastering Regular Expressions – Jeffrey

Freidl

Smart MatchingSmart Matching

UKUUG
24th November 2009

132

Smart Matching

 Introduced in Perl 5.10
 Powerful matching operator
 DWIM
 Examines operands
 Decides which match to apply

UKUUG
24th November 2009

133

Smart Match Operator
 ~~

 New operator
 Looks a bit like the binding operator (=~)

 Can be used in place of it
 $some_text =~ /some regex/

 Can be replaced with
 $some_text ~~ /some regex/

UKUUG
24th November 2009

134

Smarter Matching

 If one of its operands is a regex

 ~~ does a regex match

 Cleverer than that though
 %hash ~~ /regex/

 Regex match on hash keys
 @array ~~ /regex/

 Regex match on array elements

UKUUG
24th November 2009

135

More Smart Matches

 @array1 ~~ @array2

 Checks that arrays are the same
 $scalar ~~ @array

 Checks scalar exists in array
 $scalar ~~ %hash

 Checks scalar is a hash key

UKUUG
24th November 2009

136

Smart Scalar Matches

 What kind of match does this do?
 $scalar1 ~~ $scalar2

 It depends
 If both look like numbers

 ~~ acts like ==

 Otherwise

 ~~ acts like eq

Finding and Finding and
Using ModulesUsing Modules

UKUUG
24th November 2009

Modules

 A module is a reusuable 'chunk' of code
 Perl comes with over 100 modules

(see “perldoc perlmodlib” for list)
 Perl has a repository of freely-available

modules - the Comprehensive Perl Archive
Network (CPAN)

− http://www.cpan.org

− http://search.cpan.org

UKUUG
24th November 2009

Finding Modules

 http://search.cpan.org
 Search by:

− module name

− distribution name

− author name

 Note: CPAN also contains newer versions of
standard modules

UKUUG
24th November 2009

Installing Modules
(The Hard Way)

 Download distribution file
− MyModule-X.XX.tar.gz

 Unzip
− $ gunzip MyModule-X.XX.tar.gz

 Untar
− $ tar xvf MyModule-X.XX.tar

 Change directory
− $ cd MyModule-X.XX

UKUUG
24th November 2009

Installing Modules
(The Hard Way)

 Create Makefile
− $ perl Makefile.PL

 Build Module
− $ make

 Test Build
− $ make test

 Install Module
− $ make install

UKUUG
24th November 2009

Installing Modules
(The Hard Way)

 Note: May need root permissions for make
install

 You can have your own personal module
library

 perl Makefile.PL PREFIX=~/perl

− need to adjust @INC

UKUUG
24th November 2009

Installing Modules
(The Easy Way)

 CPANPLUS.pm is included with newer
Perls

 Automatically carries out installation
process

 Can also handle required modules

UKUUG
24th November 2009

Installing Modules
(The Easy Way)

 May not work (or may need some
configuration) through a firewall

 May still need to be root
− Can use 'sudo'

UKUUG
24th November 2009

Installing Modules
(The Easy Way)

 cpanp
[... some stuff ...]
CPAN Terminal> install Some::Module
[... some more stuff ...]
CPAN Terminal> quit

 Or
 cpanp -i Some::Module

UKUUG
24th November 2009

Using Modules

 Two types of module:
− Functions vs Objects

 Functional modules export new subroutines
and variables into your program

 Object modules usually don't
 Difference not clear cut (e.g. CGI.pm)

UKUUG
24th November 2009

Using Functional Modules
 Import defaults:
 use My::Module;

 Import optional components:
 use My::Module qw(my_sub
 @my_arr);

UKUUG
24th November 2009

Using Functional Modules
 Import defined sets of components:
 use My:Module qw(:advanced);

 Use imported components:
 $data = my_sub(@my_arr);

UKUUG
24th November 2009

Using Object Modules

 Use the module:
 use My::Object;

 Create an object:
 $obj = My::Object->new;

− Note: new is just a convention

 Interact using object's methods
 $obj->set_name($name);

UKUUG
24th November 2009

Useful Standard Modules
 constant
 Time::Local
 Text::ParseWords
 Getopt::Std
 Cwd
 File::Basename

 File::Copy
 POSIX
 CGI
 Carp
 Benchmark
 Data::Dumper

UKUUG
24th November 2009

Useful Non-Standard
Modules

 Template
 DBI
 DBIx::Class
 DateTime
 HTML::Parser
 HTML::Tidy

 LWP
 WWW::Mechanize
 Email::Simple
 XML::LibXML
 XML::Feed
 Moose

That's All FolksThat's All Folks
• Any Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Finding Modules
	Installing Modules (Hard Way)
	Slide 141
	Slide 142
	Installing Modules (Easy Way)
	Slide 144
	Slide 145
	Using Modules
	Using Functional Modules
	Slide 148
	Using Object Modules
	Useful Standard Modules
	Slide 151
	Slide 152

