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What We Will Cover

* What is Perl?

* Creating and running a Perl program
* Getting help

* Input and Output

* Perl variables

* Operators and Functions
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What We Will Cover

* Conditional Constructs
* Subroutines

* Regular Expressions

* Smart Matching

* Finding and using Modules
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Schedule

* 09:45 — Begin

* 11:15 — Coffee break (15 mins)
* 13:00 — Lunch (60 mins)

* 14:00 — Begin

* 15:30 — Coffee break (15 mins)
* 17:00 — End
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Resources

* Slides available on-line

- http://mag-sol.com/train/public/2009-11/ukuug
* Also see Slideshare

- http://www.slideshare.net/davorg/slideshows
* Get Satisfaction

- http://getsatisfaction.com/magnum
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Perl's Name

* Practical Extraction and Reporting
Language

* Pathologically Eclectic Rubbish Lister
* “Perl” is the language

* “perl” is the compiler

* Never “PERL”
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Typical Uses of Perl

* Text processing

* System administration tasks
* CGI and web programming
* Database interaction

* Other Internet programming
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Less Typical Uses of Perl

* Human Genome Project
* NASA
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What Is Perl Like?

* General purpose programming language
* Free (open source)

* Fast

* Flexible

* Secure

* Fun
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The Perl Philosophy

* There's more than one way to do it

* Three virtues of a programmer

- Laziness
- Impatience
- Hubris

* Share and enjoy!
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Creating a Perl Program

* Our first Perl program
e print "Hello world\n";

* Put this in a file called hello.pl

UKUUG
24th November 2009




Running a Perl Program

* Running a Perl program from the command
line
« $ perl hello.pl
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Running a Perl Program

* The "shebang" line (Unix, not Perl)
e« #1/usr/bin/perl

* Make program executable
« $ chmod +x hello.pl

e Run from command line
«$ ./hello.pl
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Perl Comments

* Add comments to your code
* Start with a hash (#)
* Continue to end of line

e # This 1s a hello world program
print "Hello, world!\n"; # print
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Command Line Options

* Options to control execution of the program
* For example, -w turns on warnings

e Use on command line

e perl -w hello.pl

* Or on shebang line
e #1/usr/bin/perl -w

* More usually use warnings
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Perl Documentation

* Perl comes with a huge amount of
documentation

e Accessed through the perldoc command

« perldoc perl

 perldoc perltoc — table of contents

* Also online at http://perldoc.perl.org/

* Lots of references through the course
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Some Useful Pages

* perlintro

* perldata

* perlsyn
* perlfaq
* perlstyle

* perlcheat

* Many many more
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What Is a Variable?

* A place where we can store data

A variable needs a name

- To put new data in it

- To retrieve the data stored in it
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Variable Names

* Contain alphanumeric characters and
underscores

* User variable names may not start with
numbers

* Variable names are preceded by a
punctuation mark indicating the type of data
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Types of Perl Variable

* Different types of variables start with a
different symbol

— Scalar variables start with $
- Array variables start with @

— Hash variables start with %

* More on these types soon
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Declaring Variables

* You don't need to declare variables in Perl

* But it's a very good idea
- typos
- scoping
e Using the strict pragma

e USe strict;
my $var,
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Scalar Variables

* Store a single item of data
e my $name = "Arthur";

e my $whoami =
"Just Another Perl Hacker'

e my $meaning_of_life = 42;
e my $number_less_than_1 = 0.000001;

e my $very_large_number = 3.27el7;
# 3.27 times 10 to the power_of_l?
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Type Conversions

* Perl converts between strings and numbers
whenever necessary

* Add int to a floating point number

e my $sum = $meaning_of_life +
$number_less_than_1;

* Putting a number into a string

e« print "$name says, 'The meaning
of 1life is $sum. '\n";
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Quoting Strings

* Single quotes don't expand variables or
escape sequences

e my $price = '$9.95"';
* Double quotes do

e my $invline =
"24 widgets @ $price each\n"”

N =
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Backslashes

* Use a backslash to escape special characters
in double quoted strings

e print "He said \"The price 1s
\$30060\"";

* This can look ugly
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Better Quotes

* This is a tidier alternative

e print gqq(He said "The price 1s
\$300");

* Also works for single quotes

e print q(He said "That's too
expensive'");
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Undefined Values

* A scalar variable that hasn't had data put into
it will contain the special value “undef”

e Test for it with defined() function
e if (defined($my_var)) { ... }
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Array Variables

* Arrays contain an ordered list of scalar
values
e my @fruit = ('apples', 'oranges',

'guavas', 'passionfruit',
'grapes’');

- my @magic_numbers = (23, 42, 69);

e my @random_scalars = ('mumble', 123.45,
'dave cross',
-300, S$name);
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Array Elements

* Accessing individual elements of an array

e print $fruits|[0O];
# prints ”apples”

e Note: Indexes start from zero

e print $random_scalars[2];
# prints '"dave cross"

 Note use of $ as individual element of an
array is a scalar
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Array Slices

* Returns a list of elements from an array
e print @fruits[0,2,4];

# prints "apples", '"guavas',

# "grapes"

e print @fruits[l1 .. 3];
# prints "oranges", "guavas",
# "passionfruit”

* Note use of @ as we are accessing more
than one element of the array
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Setting Array Values

« $array[4] = 'something';

« $array[400] = 'something else';

 Also with slices

e @arrayl[4, 7 .. 9] = ('four', "'seven',
'eight’', 'nine');

e @array[1, 2] = @array[2, 1];

* Doesn't need to be an array
- (3%, $y) = (3y, 3Xx);
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Array Size

* $#array is the index of the last element in
@array

 Therefore $#array + 1 is the number of
elements

« $count = @array;

* Does the same thing and is easier to
understand
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Hash Variables

* Hashes implement “look-up tables” or
“dictionaries”

e Initialised with a list

« %french = ('one', 'un',
'two', 'deux',
'three', 'trois');
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Fat Comma

* The “fat comma” (=>) is easier to
understand
e %german = (one => 'eln',
two => 'zwel',
three => 'dreli');
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Accessing Hash Values

« $three = $french{three};
e print $german{two};

* As with arrays, notice the use of $ to
indicate that we're accessing a single value
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Hash Slices

* Just like array slices

e Returns a list of elements from a hash

e print
@french{'one', 'two', "three'};
# prints "un", "deux" & "trois"

* Again, note use of @ as we are accessing
more than one value from the hash
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Setting Hash Values

« $hash{foo} = 'something';
« $hash{bar} = 'something else';

* Also with slices

e @hash{'foo', 'bar'} =
('something', 'else');

e @hash{'foo', 'bar'} =
@hash{'bar', 'foo'};
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More About Hashes

* Hashes are not sorted
* There is no equivalent to $#array
e print %hash is unhelpful

* We'll see ways round these restrictions later
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Special Perl Variables

* Perl has many special variables

* Many of them have punctuation marks as
names

e Others have names in ALL_CAPS

* They are documented in perlvar
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The Default Variable

* Many Perl operations either set $_ or use its
value if no other is given

e print; # prints the value of $_

* If a piece of Perl code seems to be missing a
variable, then it's probably using $_

* Think of “it” or “that” in English
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Using $
« while (<FILE>) {
it (/regex/) {
print;
h

}

e Three uses of $
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A Special Array

e @ARGV
* Contains your programs command line
arguments

e my $num = @ARGV;
print "$num arguments: @ARGV\n"

. =

e perl printargs.pl foo bar baz
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A Special Hash

o« BENV

* Contains the environment variables that
your script has access to.

* Keys are the variable names

 Values are the... well... values!
e print $ENV{PATH};
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Input and Output

* Programs become more useful with input
and output

* We'll see more input and output methods
later in the day

* But here are some simple methods
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Output

* The easiest way to get data out of a Perl
program is to use print

e print “Hello world\n”;

UKUUG
24th November 2009

Open Source Consultaney, Development & Training



Input

* The easiest way to get data into a Perl
program is to read from STDIN

e« $input = <STDIN>;

e < ... >isthe “read from filehandle”
operator

* STDIN is the standard input filehandle
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A Complete Example

e #1/Uusr/bin/perl

print 'wWhat 1s your name: ';
$name = <STDIN>,;
print “Hello $name”;
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Operators and Functions

* What are operators and functions?
* “Things” that do “stuff”
* Routines built into Perl to manipulate data

* Other languages have a strong distinction
between operators and functions

- in Perl that distinction can be a bit blurred

* See perlop and perlfunc
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Arithmetic Operators

* Standard arithmetic operations
add (+), subtract (-), multiply (*), divide (/)

* Less standard operations
modulus (%), exponentiation (**)
« $speed = $distance / $time;
« $vol = $length * $breadth * $height;
« $area = $p1 * ($radius ** 2);
« $0odd = $number % 2;
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Shortcut Operators

* Often need to do things like
$total = $total + $amount;

e Can be abbreviated to
$total += $amount;

e Even shorter

$x + 1
$y - 1

$x++; # same as $x += 1 or $x
$y--; # same as $y -= 1 or 3y

e Subtle difference between $x++ and ++$x
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String Operators

* Concaternation (.)

« $name = $firstname . ' ' $surname;
* Repetition (x)
e« $1ine = '-' x 80,

$police = 'hello ' x 3;
e Shortcut versions available
« $page .= $line; # $page = $page . $line
« $thing x= $i; # $thing = $thing x $1i

UKUUG Solutic
24th November 2009




File Test Operators

e Check various attributes of a file

e e $file does the file exist

e -r $fileist

ne fil

e readable

e -w $fileist

UKUUG
24th November 2009

e fi

e writeable




More File Test Operators

e Check various attributes of a file

» -d $file is the file a directory

 -f $file is the file a normal file
« -T $file is a text file
 -B $file is a binary file
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Functions

* Have longer names than operators
* Can take more arguments than operators
* Arguments follow the function name

* See perlfunc for a complete list of Perl's
built-in functions
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Function Return Values

* Functions can return scalars or lists (or
nothing)
« $age = 29.75;
$years = int($age);
e @1l1st = ('a', 'random',
'collection', 'of',
'words');

@sorted = sort(@list);
# a collection of random words
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String Functions

* length returns the length of a string

$len = length $a_string;

* uc and 1c return upper and lower case
versions of a string

$string = 'MiXeD CaSe';
print "$string\n", uc $string,
"\n", 1lc $string;

e See also ucfirst and 1cfirst
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More String Functions

* chop removes the last character from a
string and returns it

e $word = 'word';
$letter = chop $word;

* chomp removes the last character only if it is
a newline and returns true or false
appropriately
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Substrings

* substr returns substrings from a string

« $string = 'Hello world’;
print substr($string, 0, 5);
# prints 'Hello'

* You can also assign to a substring

e substr($string, 0, 5) =
'Greetings';
print $string;
# prints 'Greetings world'
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Numeric Functions

* abs returns the absolute value

* COS, sin, tan standard trigonometric
functions

* exp exponentiation using e
* log logarithm to base e
* rand returns a random number

* sqrt returns the square root
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Array Manipulation

* push adds a new element to the end of an
array

« push @array, $value;

 pop removes and returns the last element in
an array

« $value = pop @array;

e shift and unshift do the same for the
start of an array
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Array Manipulation

e sort returns a sorted list

- it does not sort the list in place
@sorted = sort @array;

* sort does a lot more besides, see the docs
(perldoc -1 sort)

* reverse returns a reversed list

@reverse = reverse @array;

UKUUG
24th November 2009

Open Source Consultaney, Development & Training



Arrays and Strings

* join takes an array and returns a string
@array = (1 .. 5);

$string = join ', ', @array;

# $string 1s '1, 2, 3, 4, 5

split takes a string and converts it into an
array

$string = '1~2~3~4~5"';
@array = split(/~/, $string);
# @array 1s (1, 2, 3, 4, 5)
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Hash Functions

* delete removes a key/value pair from a
hash

* exists tells you if an element exists in a
hash

* keys returns a list of all the keys in a hash

 values returns a list of all the values in a
hash
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File Operations

* open opens a file and associates it with a
filehandle

« open(my $file, '<', 'in.dat');

* You can then read the file with <$file>

e $line = <$file>; # one line

e @lines = <$file>; # all lines

* Finally, close the file with close

« close($file);
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Other File Functions

* read to read a fixed number of bytes into a
buffer

e $bytes = read(FILE, $buffer, 1024);

* seek to move to a random position in a file
e seek(FILE, 0, 0);
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Other File Functions

* tell to get current file position
« $where = tell FILE;

* truncate to truncate file to given size

e truncate FILE, $where;
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Writing to Files

* Open file in write mode

e open my $file, '>', 'out.dat';
# overwrite

« open my $file, '>>', 'out.dat';
# append

* Write to file using print

e print $file “some data\n”;

 Note lack of comma
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Time Functions

e time returns the number of seconds since
midnight Jan 1st 1970

e $now = time;
 Jocaltime converts that into more usable
values

($sec, $min, $hour, $mday, $mon,
$year, $wday, $yday, $isdst)
= localtime($now);
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localtime Caveats

e $monisOto 11

* $year is years since 1900
* $wday is 0 (Sun) to 6 (Sat)
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localtime Shortcuts

e Jt's common to use 1localtime on the
current time

« @time_bits = localtime(time),

e Call to time can be omitted
e @time_bits = localtime;

* Use array slices

» ($d, $m, 3y) =
(localtime)[3 .. 5];
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Date & Time Formats

* You can get formatted dates by fiddling the
return values from localtime

e Easier to use strftime (from POSIX.pm)
e Use POSIX 'strftime';

e print strftime( '%Y-%m-%d",
localtime);
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Date & Time Formats

* Format followed by list of date/time values

e Format is POSIX standard

- Like UNIX date command
e print strftime('%d %B %y',
localtime);

e print strftime( '%H:%M:%S",
localtime);
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Conditional Constructs

e Conditional constructs allow us to choose
different routes of execution through the
program

* This makes for far more interesting
programs

* The unit of program execution is a block of
code

* Blocks are delimited with braces { ... }
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Conditional Constructs

* Conditional blocks are controlled by the
evaluation of an expression to see if it is true
or false

e But what is truth?

UKUUG
24th November 2009




What Is Truth?

* In Perl it's easier to answer the question
"what is false?"

* 0 (the number zero)
* " (the empty string)
* undef (an undefined value)

* () (an empty list)

* Everything else is true
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Comparison Operators

* Compare two values in some way

* Are they equal
- $x == $y or $x eq %y
- $x = $y or $x ne $y
* Is one greater than another
- $x > By or $x gt By
- $x >= Py or $x ge $y
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Comparison Operators

e [s one less than another

- $x < $y or $x 1t By
- $x <= $y or $x le 3By

UKUUG
24th November 2009




Comparison Examples

e 62 > 42 # true

e 'Q' == (3 * 2) - 6 # true

« 'apple' gt 'banana' # false

e« 'apple' == 'banana' # true(!)
e 1 + == '3 bears' # true
el + 3 == 'three' # false
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Boolean Operators

* Combine conditional expressions
« EXPR_1 and EXPR_2

- true if both EXPR 1 and EXPR 2 are true
e EXPR_1 or EXPR 2

- true if either EXPR 1 or EXPR_2 are true
* Alternative syntax && for and and || for or

* Different precedence though
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Short-Circuit Operators

* EXPR_1 or EXPR_2

* Only need to evaluate EXPR_2 if EXPR_1
evaluates as false

e We can use this to make code easier to
follow

« open FILE, 'something.dat'
or die "Can't open file: $!";
e @ARGVY == 2 or print $usage_msg;
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If

 if - our first conditional
. if (EXPR) { BLOCK }

* Only executes BLOCK if EXPR is true

e 1T ($name eq 'Doctor') {
regenerate();
h
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If ... else ...

e if .. else ... -an extended if
. if (EXPR) { BLOCK1l } else { BLOCK2 }

e [f EXPR is true, execute BLOCKI1,
otherwise execute BLOCK?2

« 1T ($name eq 'Doctor') {
regenerate();
} else {
die "Game over!\n";
h
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If ... elsif ... else ...

e 1f .. elsif .. else ..-even more
control
« 1T (EXPR1) { BLOCK1 }

elsif (EXPR2) { BLOCK2 }
else { BLOCKS3 }
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If ... elsif ... else ...

e If EXPRI1 is true,
execute BLOCK1
else if EXPR?2 is true,
execute BLOCK?2
otherwise execute BLOCK3
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If ... elsif ... else ...

* An example

e 1T ($name eq 'Doctor') {

regenerate();

} elsif ($tardis_location

eq $here) {

escape();

} else {
die "Game over!\n";

b
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while

* while - repeat the same code
. while (EXPR) { BLOCK }

* Repeat BLOCK while EXPR is true

e while ($dalek_prisoners) {
print "Ex-ter-min-ate\n";
$dalek_prisoners--;

}
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until

* until - the opposite of while
. until (EXPR) { BLOCK }

e Execute BLOCK until EXPR is true

e until ($regenerations == 12) {
print "Regenerating\n";
regenerate();
$regenerations++;

}
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for

» for - more complex loops
. for (INIT; EXPR; INCR) { BLOCK }

e Like C

* Execute INIT
If EXPR is false, exit loop, otherwise
execute BLOCK, execute INCR and retest
EXPR
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for

* An example

e for ($1 = 1, $1 <= 10; $i++) {
print "$i squared is ",
$i * $i, "\n";
h

* Used surprisingly rarely
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foreach

» foreach - simpler looping over lists
« foreach VAR (LIST) { BLOCK }

* For each element of LIST, set VAR to equal
the element and execute BLOCK

« foreach $1 (1 .. 10) {
print "$1 squared 1is ",
$l * $l, ll\nll;
h
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foreach

* Another example

e my %months = (Jan => 31, Feb => 28,
Mar => 31, Apr => 30,
May => 31, Jun => 30,
)i
foreach (keys %months) {
print "$_ has $months{$_3} days\n";

}
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Using while Loops

* Taking input from STDIN
« while (<STDIN>) {
print;

¥

e This is the same as

« while (defined($_ = <STDIN>)) {
print $_;

¥
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Breaking Out of Loops

* next —jump to next iteration of loop

* last — jump out of loop

* redo — jump to start of same iteration of
loop
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Subroutines

* Self-contained "mini-programs" within your
program

* Make it easy to repeat code

e Subroutines have a name and a block of
code

. sub NAME {
BLOCK
}
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Subroutine Example

e Sub exterminate {
print "Ex-Ter-Min-Ate!!\n";
$timelords--;

}
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Calling a Subroutine

e« &exterminate;
« exterminate();
e exterminate;

* last one only works if function has been
predeclared
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Subroutine Arguments

* Functions become far more useful if you can
pass arguments to them

« exterminate('The Doctor');

* Arguments end up in the @_ array within the
function
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Subroutine Arguments

e Sub exterminate {
my ($name) = @_;
print "Ex-Ter-Min-Ate $name\n";
$timelords--;

}
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Multiple Arguments

 As @_ is an array it can contain multiple
arguments

e Sub exterminate {
foreach (@_) {
print "Ex-Ter-Min-Ate $_\n";

/4

$timelords--;

¥
¥
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Calling Subroutines

* A subtle difference between &my_sub and
my_sub ()

* &my_sub passes on the contents of @_ to the
called subroutine

e« sub first { &second };
sub second { print @_ };
first('some', 'random', 'data'),

* You usually don't want to do that
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By Value or Reference

* Passing by value passes the value of the
variable into the subroutine. Changing the
argument doesn't alter the external variable

* Passing by reference passes the actual
variable. Changing the argument alters the
external value

* Perl allows you to choose
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Pass By Value

* Simulating pass by value
e my ($argl, $arg2) = @_;

e Updating $argl and $arg2 doesn’t effect
anything outside the subroutine
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Pass By Reference

* Simulating pass by reference
e $_[0] = 'whatever';

e Updating the contents of @_ updates the
external values
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Returning Values

e Use return to return a value from a
subroutine

e sub exterminate {

if (rand > .25) {
print "Ex-Ter-Min-Ate $_[O0]\n";
$timelords--;
return 1;

} else {
return;

h

}
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Returning a List

e Subroutines can return lists

e sub exterminate {
my @exterminated;
foreach (@_) {
if (rand > .25) {
print "Ex-Ter-Min-Ate $_\n";
$timelords--;
push @exterminated, $_;

}
}

return @exterminated;

}
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Regular Expressions

* Patterns that match strings
* A bit like wild-cards
* A “mini-language” within Perl
- Alien DNA
* The key to Perl's text processing power
* Sometimes overused!

* Documented in perldoc perlre
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Match Operator

« m/PATTERN/ - the match operator
* Works on $__ by default

e In scalar context returns true if the match
succeeds

* In list context returns list of "captured" text
* m is optional if you use / characters

* With m you can use any delimiters
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Match Examples

« while (<FILE>) {

orint if /foo/;
orint 1if /bar/1i;
orint if m|http://]|;
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Substitutions

* S/PATTERN/REPLACEMENT/ - the
substitution operator

* Works on $_ by default

 In scalar context returns true if substitution
succeeds

e In list context returns number of
replacements

* Can choose any delimiter
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Substitution Examples

« while (<FILE>) {
s/teh/the/gi;
s/freind/friend/g1i;
s/sholud/should/g1i;
print;

}
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Binding Operator

e If we wantm// or s/// to work on
something other than $_ then we need to use
the binding operator

« $name =~ s/Dave/David/;
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Metacharacters

* Matching something other than literal text

A - matches start of string

e $ - matc

hes end of string

e . - matc

hes any character (except \n)

* \s - matches a whitespace character

* \S - matches a non-whitespace character
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More Metacharacters

* \d - matches any digit

* \D - matches any non-digit

* \w - matches any "word" character

* \W - matches any "non-word" character

* \b - matches a word boundary

* \B - matches anywhere except a word
boundary
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Metacharacter Examples

« while (<FILE>) {

orint 1f m|Ahttp];
orint if /\bperl\b/;
orint if /\S/;

orint it /\$\d\.\d\d/;
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Quantifiers

* Specify the number of occurrences
e ? - match zero or one

e * - match zero or more

* + - match one or more

* {n} - match exactly n

* {n, } - match n or more

* {n, m} - match between n and m
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Quantifier Examples

« while (<FILE>) {

orint 1f /whiske?y/1;
orint if /so+n/;

orint if /\d*\.\d+/;
orint 1f /\bA\w{3}\b/;
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Character Classes

 Define a class of characters to match
« /[aeliou]/ # match any vowel

* Use - to define a contiguous range
e /[A-Z]/ # match upper case letters

e Use A to match inverse set
« /[NA-Za-z] # match non-letters

UKUUG
24th November 2009




Alternation

* Use | to match one of a set of options
« /rose|marthaldonna/i;

* Use parentheses for grouping
e /AN(rose|marthaldonna)$/1i;
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Capturing Matches

* Parentheses are also used to capture parts of
the matched string

e The captured parts are in $1, $2, etc...

« while (<FILE>) {
if (/A(\w+)\s+(\w+)/) {
print "The first word was $1\n";
print "The second word was $2";

}
}
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Returning Captures

* Captured values are also returned if the
match operator is used in list context
e my @nums = $text =~ /(\d+)/g;

print "I found these integers:\n";
print "@nums\n";
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More Information

* perldoc perlre

* perldoc perlretut

* Mastering Regular Expressions — Jeffrey
Freidl
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Smart Matching

e Introduced in Perl 5.10

* Powerful matching operator
* DWIM
* Examines operands

* Decides which match to apply
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Smart Match Operator

. ]

* New operator

* Looks a bit like the binding operator (=~)

* Can be used in place of it
« $some_text =~ /some regex/

* Can be replaced with
« $some_text ~~ /some regex/
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Smarter Matching

* If one of its operands is a regex
 ~~ does a regex match

* Cleverer than that though
« %hash ~~ /regex/

* Regex match on hash keys
e @array ~~ /regex/

* Regex match on array elements .
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More Smart Matches

e @arrayl ~~ @array?2
* Checks that arrays are the same

« $scalar ~~ @array

* Checks scalar exists in array
e $scalar ~~ %hash

* Checks scalar is a hash key
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Smart Scalar Matches

* What kind of match does this do?
« $scalarl ~~ $scalar?

* It depends

* If both look like numbers

e ~~ acts like ==

* Otherwise

 ~~ acts like eq
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Modules

A module is a reusuable 'chunk' of code

* Perl comes with over 100 modules
(see “perldoc perlmodlib” for list)

* Perl has a repository of freely-available

modules - the Comprehensive Perl Archive
Network (CPAN)

- http://www.cpan.org

- http://search.cpan.or
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Finding Modules

* http://search.cpan.org
* Search by:

- module name
— distribution name

- author name

e Note: CPAN also contains newer versions of
standard modules
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Installing Modules
(The Hard Way)

* Download distribution file
- MyModule-X.XX.tar.gz
* Unzip
- $ gunzip MyModule-X.XX.tar.gz

* Untar
- $ tar xvf MyModule-X.XX.tar

* Change directory
- $ cd MyModule-X.XX
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Installing Modules
(The Hard Way)

* Create Maketfile
- $ perl Makefile.PL

e Build Module
- $ make

e Test Build
- $ make test

e Install Module
- $ make install
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Installing Modules
(The Hard Way)

e Note: May need root permissions for make
install

* You can have your own personal module
library

« perl Makefile.PL PREFIX=~/perl
- need to adjust @INC
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Installing Modules
(The Easy Way)

* CPANPLUS.pm is included with newer
Perls

* Automatically carries out installation
process

* Can also handle required modules
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Installing Modules
(The Easy Way)

* May not work (or may need some
configuration) through a firewall

* May still need to be root

- Can use 'sudo'
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Installing Modules
(The Easy Way)

¢ Cpanp
[ ... some stuff ... ]
CPAN Terminal> install Some: :Module
[ ... some more stuff ... |
CPAN Terminal> quit

* Or

e Cpanp -1 Some::Module
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Using Modules

* Two types of module:
- Functions vs Objects

* Functional modules export new subroutines
and variables into your program

* Object modules usually don't

* Difference not clear cut (e.g. CGIL.pm)
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Using Functional Modules

* Import defaults:
e Use My: :Module;
* Import optional components:

e USse My::Module gw(my_sub
@my_arr);
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Using Functional Modules

* Import defined sets of components:
e Use My:Module qgw(:advanced);

* Use imported components:
« $data = my_sub(@my_arr);
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Using ODbject Modules

* Use the module:

e USse My::0Object;

* Create an object:

« $0bj = My::0bject->new;
- Note: new is just a convention

* Interact using object's methods

e $obj->set_name($name);
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Useful Standard Modules

* constant

e Time::I.ocal

e Text::ParseWords
* Getopt::Std
e Cwd

e File::Basename
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Carp
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Useful Non-Standard

Modules
* Template * LWP
* DBI * WWW::Mechanize
* DBIx::Class * Email::Simple
* DateTime e XML::LibXML
e HTML::Parser * XML::Feed
* HTML::Tidy * Moose
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ERASEANIREOIKS

* Any Questions?
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