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What We Will Cover

 What is Perl?
 Creating and running a Perl program
 Getting help
 Input and Output
 Perl variables
 Operators and Functions
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What We Will Cover
 Conditional Constructs
 Subroutines
 Regular Expressions
 Smart Matching 
 Finding and using Modules
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Schedule

 09:45 – Begin
 11:15 – Coffee break (15 mins)
 13:00 – Lunch (60 mins)
 14:00 – Begin
 15:30 – Coffee break (15 mins)
 17:00 – End
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Resources

 Slides available on-line
− http://mag-sol.com/train/public/2009-11/ukuug

 Also see Slideshare
− http://www.slideshare.net/davorg/slideshows

 Get Satisfaction
− http://getsatisfaction.com/magnum



  

What is Perl?What is Perl?
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Perl's Name

 Practical Extraction and Reporting 
Language

 Pathologically Eclectic Rubbish Lister
 “Perl” is the language 
 “perl” is the compiler
 Never “PERL”
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Typical Uses of Perl

 Text processing
 System administration tasks
 CGI and web programming
 Database interaction
 Other Internet programming
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Less Typical Uses of Perl
 Human Genome Project
 NASA
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What is Perl Like?

 General purpose programming language
 Free (open source)
 Fast
 Flexible
 Secure
 Fun
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The Perl Philosophy

 There's more than one way to do it
 Three virtues of a programmer

− Laziness

− Impatience

− Hubris

 Share and enjoy!



  

Creating and Creating and 
Running aRunning a

Perl ProgramPerl Program
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Creating a Perl Program

 Our first Perl program
 print "Hello world\n";

 Put this in a file called hello.pl
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Running a Perl Program

 Running a Perl program from the command 
line

 $ perl hello.pl
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Running a Perl Program

 The "shebang" line (Unix, not Perl)
 #!/usr/bin/perl

 Make program executable
 $ chmod +x hello.pl

 Run from command line
 $ ./hello.pl
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Perl Comments

 Add comments to your code
 Start with a hash (#)
 Continue to end of line
 # This is a hello world program
print "Hello, world!\n"; # print 
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Command Line Options

 Options to control execution of the program
 For example, -w turns on warnings
 Use on command line
 perl -w hello.pl

 Or on shebang line
 #!/usr/bin/perl -w

 More usually use warnings



  

Getting HelpGetting Help
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Perl Documentation

 Perl comes with a huge amount of 
documentation

 Accessed through the perldoc command
 perldoc perl

 perldoc perltoc – table of contents

 Also online at http://perldoc.perl.org/
 Lots of references through the course
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Some Useful Pages

 perlintro
 perldata
 perlsyn
 perlfaq
 perlstyle
 perlcheat
 Many many more



  

Perl VariablesPerl Variables
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What is a Variable?

 A place where we can store data
 A variable needs a name

− To put new data in it

− To retrieve the data stored in it
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Variable Names

 Contain alphanumeric characters and 
underscores

 User variable names may not start with 
numbers

 Variable names are preceded by a 
punctuation mark indicating the type of data
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Types of Perl Variable

 Different types of variables start with a 
different symbol

− Scalar variables start with $

− Array variables start with @

− Hash variables start with %

 More on these types soon
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Declaring Variables

 You don't need to declare variables in Perl
 But it's a very good idea

− typos
− scoping

 Using the strict pragma
 use strict;
my $var;
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Scalar Variables

 Store a single item of data
 my $name = "Arthur";

 my $whoami =
    'Just Another Perl Hacker';

 my $meaning_of_life = 42;

 my $number_less_than_1 = 0.000001;

 my $very_large_number = 3.27e17; 
# 3.27 times 10 to the power of 17
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Type Conversions

 Perl converts between strings and numbers 
whenever necessary

 Add int to a floating point number
 my $sum = $meaning_of_life +
          $number_less_than_1;

 Putting a number into a string
 print "$name says, 'The meaning 
of life is $sum.'\n";



UKUUG
24th November 2009

28

Quoting Strings
 Single quotes don't expand variables or 

escape sequences
 my $price = '$9.95';

 Double quotes do
 my $invline =
   "24 widgets @ $price each\n";
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Backslashes
 Use a backslash to escape special characters 

in double quoted strings
 print "He said \"The price is 
\$300\"";

 This can look ugly
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Better Quotes

 This is a tidier alternative
 print qq(He said "The price is
\$300");

 Also works for single quotes
 print q(He said "That's too 
expensive");
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Undefined Values
 A scalar variable that hasn't had data put into 

it will contain the special value “undef”
 Test for it with defined() function
 if (defined($my_var)) { ... }
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Array Variables
 Arrays contain an ordered list of scalar 

values
 my @fruit = ('apples', 'oranges',
             'guavas', 'passionfruit',
             'grapes');

 my @magic_numbers = (23, 42, 69);

 my @random_scalars = ('mumble', 123.45,
                      'dave cross',
                      -300, $name);
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Array Elements
 Accessing individual elements of an array
 print $fruits[0];
# prints "apples"

 Note: Indexes start from zero
 print $random_scalars[2];
# prints "dave cross"

 Note use of $ as individual element of an 
array is a scalar
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Array Slices
 Returns a list of elements from an array
 print @fruits[0,2,4];
# prints "apples", "guavas",
# "grapes"

 print @fruits[1 .. 3];
# prints "oranges", "guavas",
# "passionfruit"

 Note use of @ as we are accessing more 
than one element of the array 
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Setting Array Values
 $array[4] = 'something';

 $array[400] = 'something else';

 Also with slices
 @array[4, 7 .. 9] = ('four','seven',
                     'eight','nine');

 @array[1, 2] = @array[2, 1];

 Doesn't need to be an array
− ($x, $y) = ($y, $x);
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Array Size
 $#array is the index of the last element in  
@array

 Therefore $#array + 1 is the number of 
elements

 $count = @array; 

 Does the same thing and is easier to 
understand
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Hash Variables
 Hashes implement “look-up tables” or 

“dictionaries”
 Initialised with a list
 %french = ('one', 'un',
           'two', 'deux',
           'three', 'trois');
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Fat Comma
 The “fat comma” (=>) is easier to 

understand
 %german = (one   => 'ein',
           two   => 'zwei', 
           three => 'drei');
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Accessing Hash Values

 $three = $french{three};

 print $german{two};

 As with arrays, notice the use of $ to 
indicate that we're accessing a single value
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Hash Slices
 Just like array slices
 Returns a list of elements from a hash
 print 
@french{'one','two','three'};
# prints "un", "deux" & "trois"

 Again, note use of @ as we are accessing 
more than one value from the hash
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Setting Hash Values

 $hash{foo} = 'something';

 $hash{bar} = 'something else';

 Also with slices
 @hash{'foo', 'bar'} =
 ('something', 'else');

 @hash{'foo', 'bar'} =
 @hash{'bar', 'foo'};
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More About Hashes

 Hashes are not sorted
 There is no equivalent to $#array

 print %hash is unhelpful

 We'll see ways round these restrictions later
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Special Perl Variables

 Perl has many special variables
 Many of them have punctuation marks as 

names
 Others have names in ALL_CAPS
 They are documented in perlvar
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The Default Variable

 Many Perl operations either set $_ or use its 
value if no other is given

 print; # prints the value of $_

 If a piece of Perl code seems to be missing a 
variable, then it's probably using $_

 Think of “it” or “that” in English
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Using $_
 while (<FILE>) {
  if (/regex/) {
    print;
  }
}

 Three uses of $_
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A Special Array

 @ARGV

 Contains your programs command line 
arguments

 my $num = @ARGV;
print "$num arguments: @ARGV\n";

 perl printargs.pl foo bar baz
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A Special Hash

 %ENV

 Contains the environment variables that 
your script has access to.

 Keys are the variable names
 Values are the… well… values!
 print $ENV{PATH};



  

Input and OutputInput and Output
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Input and Output

 Programs become more useful with input 
and output

 We'll see more input and output methods 
later in the day

 But here are some simple methods
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Output

 The easiest way to get data out of a Perl 
program is to use print

 print “Hello world\n”;



UKUUG
24th November 2009

51

Input

 The easiest way to get data into a Perl 
program is to read from STDIN

 $input = <STDIN>;

 < ... > is the “read from filehandle” 
operator

 STDIN is the standard input filehandle
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A Complete Example

 #!/usr/bin/perl

print 'What is your name: ';
$name = <STDIN>;
print “Hello $name”;



  

Operators and Operators and 

FunctionsFunctions
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Operators and Functions

 What are operators and functions?
 “Things” that do “stuff”
 Routines built into Perl to manipulate data
 Other languages have a strong distinction 

between operators and functions
− in Perl that distinction can be a bit blurred

 See perlop and perlfunc
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Arithmetic Operators
 Standard arithmetic operations

add (+), subtract (-), multiply (*), divide (/)
 Less standard operations

modulus (%), exponentiation (**)
 $speed = $distance / $time;

 $vol = $length * $breadth * $height;

 $area = $pi * ($radius ** 2);

 $odd = $number % 2;
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Shortcut Operators
 Often need to do things like

$total = $total + $amount;

 Can be abbreviated to

$total += $amount;

 Even shorter
$x++; # same as $x += 1 or $x = $x + 1
$y--; # same as $y -= 1 or $y = $y - 1

 Subtle difference between $x++ and ++$x
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String Operators
 Concaternation (.)
 $name = $firstname . ' ' $surname;

 Repetition (x)
 $line = '-' x 80;
$police = 'hello ' x 3;

 Shortcut versions available
 $page .= $line; # $page = $page . $line

 $thing x= $i;   # $thing = $thing x $i
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File Test Operators
 Check various attributes of a file
 -e $file does the file exist

 -r $file is the file readable

 -w $file is the file writeable
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More File Test Operators
 Check various attributes of a file
 -d $file is the file a directory

 -f $file is the file a normal file

 -T $file is a text file

 -B $file is a binary file
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Functions
 Have longer names than operators
 Can take more arguments than operators
 Arguments follow the function name
 See perlfunc for a complete list of Perl's 

built-in functions
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Function Return Values
 Functions can return scalars or lists (or 

nothing)
 $age = 29.75;
$years = int($age);

 @list = ('a', 'random',
         'collection', 'of',
         'words');
@sorted = sort(@list);
# a collection of random words
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String Functions
 length returns the length of a string
 $len = length $a_string;

 uc and lc return upper and lower case 
versions of a string

 $string = 'MiXeD CaSe';
print "$string\n", uc $string,
      "\n", lc $string;

 See also ucfirst and lcfirst
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More String Functions
 chop removes the last character from a 

string and returns it
 $word = 'word';
$letter = chop $word;

 chomp removes the last character only if it is 
a newline and returns true or false 
appropriately
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Substrings
 substr returns substrings from a string
 $string = 'Hello world';
print substr($string, 0, 5); 
             # prints 'Hello'

 You can also assign to a substring
 substr($string, 0, 5) =
  'Greetings';
print $string;
# prints 'Greetings world'
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Numeric Functions
 abs returns the absolute value

 cos, sin, tan standard trigonometric 
functions

 exp exponentiation using e

 log logarithm to base e

 rand returns a random number

 sqrt returns the square root
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Array Manipulation
 push adds a new element to the end of an 

array
 push @array, $value;

 pop removes and returns the last element in 
an array

 $value = pop @array;

 shift and unshift do the same for the 
start of an array
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Array Manipulation
 sort returns a sorted list 

− it does not sort the list in place
 @sorted = sort @array;

 sort does a lot more besides, see the docs 
(perldoc -f sort)

 reverse returns a reversed list
 @reverse = reverse @array;
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Arrays and Strings
 join takes an array and returns a string
 @array = (1 .. 5);
$string = join ', ', @array; 
# $string is '1, 2, 3, 4, 5'

 split takes a string and converts it into an 
array

 $string = '1~2~3~4~5';
@array = split(/~/, $string);
# @array is (1, 2, 3, 4, 5)
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Hash Functions
 delete removes a key/value pair from a 

hash
 exists tells you if an element exists in a 

hash
 keys returns a list of all the keys in a hash

 values returns a list of all the values in a 
hash
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File Operations
 open opens a file and associates it with a 

filehandle
 open(my $file, '<', 'in.dat');

 You can then read the file with <$file>
 $line  = <$file>; # one line

 @lines = <$file>; # all lines

 Finally, close the file with close
 close($file);
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Other File Functions
 read to read a fixed number of bytes into a 

buffer
 $bytes = read(FILE, $buffer, 1024);

 seek to move to a random position in a file
 seek(FILE, 0, 0);
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Other File Functions
 tell to get current file position
 $where = tell FILE;

 truncate to truncate file to given size
 truncate FILE, $where;
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Writing to Files

 Open file in write mode
 open my $file, '>', 'out.dat';
# overwrite

 open my $file, '>>', 'out.dat';
# append

 Write to file using print
 print $file “some data\n”;

 Note lack of comma
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Time Functions
 time returns the number of seconds since 

midnight Jan 1st 1970
 $now = time;

 localtime converts that into more usable 
values

 ($sec, $min, $hour, $mday, $mon, 
 $year, $wday, $yday, $isdst)
  = localtime($now);
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localtime Caveats

 $mon is 0 to 11

 $year is years since 1900

 $wday is 0 (Sun) to 6 (Sat)
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localtime Shortcuts
 It's common to use localtime on the 

current time
 @time_bits = localtime(time);

 Call to time can be omitted
 @time_bits = localtime;

 Use array slices
 ($d, $m, $y) =
    (localtime)[3 .. 5];
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Date & Time Formats

 You can get formatted dates by fiddling the 
return values from localtime

 Easier to use strftime (from POSIX.pm)
 use POSIX 'strftime';

 print strftime('%Y-%m-%d',
               localtime);
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Date & Time Formats
 Format followed by list of date/time values
 Format is POSIX standard

− Like UNIX date command
 print strftime('%d %B %y',
               localtime);

 print strftime('%H:%M:%S',
               localtime);



  

Conditional Conditional 

ConstructsConstructs
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Conditional Constructs
 Conditional constructs allow us to choose 

different routes of execution through the 
program

 This makes for far more interesting 
programs

 The unit of program execution is a block of 
code

 Blocks are delimited with braces { … }
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Conditional Constructs

 Conditional blocks are controlled by the 
evaluation of an expression to see if it is true 
or false

 But what is truth?
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What is Truth?

 In Perl it's easier to answer the question 
"what is false?"

 0 (the number zero)
 '' (the empty string)
 undef (an undefined value)
 () (an empty list)
 Everything else is true



UKUUG
24th November 2009

83

Comparison Operators

 Compare two values in some way
 Are they equal

− $x == $y or $x eq $y

− $x != $y or $x ne $y

 Is one greater than another
− $x > $y or $x gt $y

− $x >= $y or $x ge $y
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Comparison Operators

 Is one less than another
− $x < $y or $x lt $y

− $x <= $y or $x le $y
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Comparison Examples

 62 > 42             # true

 '0' == (3 * 2) - 6  # true

 'apple' gt 'banana' # false

 'apple' == 'banana' # true(!)

 1 + 2 == '3 bears'  # true

 1 + 3 == 'three'    # false
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Boolean Operators
 Combine conditional expressions
 EXPR_1 and EXPR_2

− true if both EXPR_1 and EXPR_2 are true
 EXPR_1 or EXPR_2

− true if either EXPR_1 or _EXPR_2 are true

 Alternative syntax && for and and || for or
 Different precedence though
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Short-Circuit Operators
 EXPR_1 or EXPR_2
 Only need to evaluate EXPR_2 if EXPR_1 

evaluates as false
 We can use this to make code easier to 

follow
 open FILE, 'something.dat' 
  or die "Can't open file: $!";

 @ARGV == 2 or print $usage_msg;
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if

 if - our first conditional
 if (EXPR) { BLOCK }

 Only executes BLOCK if EXPR is true
 if ($name eq 'Doctor') {
  regenerate();
}
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if ... else ...
 if … else ... - an extended if
 if (EXPR) { BLOCK1 } else { BLOCK2 }

 If EXPR is true, execute BLOCK1, 
otherwise execute BLOCK2

 if ($name eq 'Doctor') {
  regenerate();
} else {
  die "Game over!\n";
}
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if ... elsif ... else ...

 if  … elsif … else … - even more 
control

 if (EXPR1) { BLOCK1 } 
elsif (EXPR2) { BLOCK2 }
else { BLOCK3 }
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if ... elsif ... else ...

 If EXPR1 is true,
execute BLOCK1
else if EXPR2 is true,
execute BLOCK2
otherwise execute BLOCK3
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if ... elsif ... else ...

 An example
 if ($name eq 'Doctor') {
  regenerate();
} elsif ($tardis_location
           eq $here) {
  escape();
} else {
  die "Game over!\n";
}
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while

 while - repeat the same code
 while (EXPR) { BLOCK }

 Repeat BLOCK while EXPR is true
 while ($dalek_prisoners) {
  print "Ex-ter-min-ate\n";
  $dalek_prisoners--;
}
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until

 until - the opposite of while
 until (EXPR) { BLOCK }

 Execute BLOCK until EXPR is true
 until ($regenerations == 12) {
  print "Regenerating\n";
  regenerate();
  $regenerations++;
}
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for

 for - more complex loops
 for (INIT; EXPR; INCR) { BLOCK }

 Like C
 Execute INIT

If EXPR is false, exit loop, otherwise 
execute BLOCK, execute INCR and retest 
EXPR
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for

 An example
 for ($i = 1; $i <= 10; $i++) {
  print "$i squared is ",
        $i * $i, "\n";
}

 Used surprisingly rarely
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foreach

 foreach - simpler looping over lists
 foreach VAR (LIST) { BLOCK }

 For each element of LIST, set VAR to equal 
the element and execute BLOCK

 foreach $i (1 .. 10) {
  print "$i squared is ", 
        $i * $i, "\n";
}
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foreach

 Another example
 my %months = (Jan => 31, Feb => 28,
              Mar => 31, Apr => 30,
              May => 31, Jun => 30,
              … );
foreach (keys %months) {
  print "$_ has $months{$_} days\n";
}
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Using while Loops

 Taking input from STDIN
 while (<STDIN>) {
  print;
}

 This is the same as
 while (defined($_ = <STDIN>)) {
  print $_;
}
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Breaking Out of Loops

 next – jump to next iteration of loop

 last – jump out of loop

 redo – jump to start of same iteration of 
loop



  

SubroutinesSubroutines
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Subroutines
 Self-contained "mini-programs" within your 

program
 Make it easy to repeat code
 Subroutines have a name and a block of 

code
 sub NAME {
  BLOCK
}
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Subroutine Example

 sub exterminate {
  print "Ex-Ter-Min-Ate!!\n";
  $timelords--;
}
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Calling a Subroutine

 &exterminate;

 exterminate();

 exterminate; 

 last one only works if function has been 
predeclared
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Subroutine Arguments
 Functions become far more useful if you can 

pass arguments to them
 exterminate('The Doctor');

 Arguments end up in the @_ array within the 
function
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Subroutine Arguments
 sub exterminate {
  my ($name) = @_;
  print "Ex-Ter-Min-Ate $name\n";
  $timelords--;
}
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Multiple Arguments

 As @_ is an array it can contain multiple 
arguments

 sub exterminate {
  foreach (@_) {
    print "Ex-Ter-Min-Ate $_\n";
    $timelords--;
  }
}
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Calling Subroutines

 A subtle difference between &my_sub and 
my_sub()

 &my_sub passes on the contents of @_ to the 
called subroutine

 sub first { &second };
sub second { print @_ };
first('some', 'random', 'data');

 You usually don't want to do that
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By Value or Reference

 Passing by value passes the value of the 
variable into the subroutine. Changing the 
argument doesn't alter the external variable

 Passing by reference passes the actual 
variable. Changing the argument alters the 
external value

 Perl allows you to choose
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Pass By Value

 Simulating pass by value
 my ($arg1, $arg2) = @_;

 Updating $arg1 and $arg2 doesn’t effect 
anything outside the subroutine
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Pass By Reference

 Simulating pass by reference
 $_[0] = 'whatever';

 Updating the contents of @_ updates the 
external values
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Returning Values
 Use return to return a value from a 

subroutine
 sub exterminate {
  if (rand > .25) {
    print "Ex-Ter-Min-Ate $_[0]\n";
    $timelords--;
    return 1;
  } else {
    return;
  }
}
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Returning a List
 Subroutines can return lists
 sub exterminate {
  my @exterminated;
  foreach (@_) {
    if (rand > .25) {
      print "Ex-Ter-Min-Ate $_\n";
      $timelords--; 
      push @exterminated, $_;
    } 
  }
  return @exterminated;
}
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Regular Expressions
 Patterns that match strings
 A bit like wild-cards
 A “mini-language” within Perl

− Alien DNA

 The key to Perl's text processing power
 Sometimes overused!
 Documented in perldoc perlre
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Match Operator
 m/PATTERN/ - the match operator

 Works on $_ by default

 In scalar context returns true if the match 
succeeds

 In list context returns list of "captured" text
 m is optional if you use / characters
 With m you can use any delimiters
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Match Examples

 while (<FILE>) {
  print if /foo/;
  print if /bar/i;
  print if m|http://|;
}
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Substitutions
 s/PATTERN/REPLACEMENT/ - the 

substitution operator
 Works on $_ by default

 In scalar context returns true if substitution 
succeeds

 In list context returns number of 
replacements

 Can choose any delimiter
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Substitution Examples

 while (<FILE>) {
  s/teh/the/gi;
  s/freind/friend/gi;
  s/sholud/should/gi;
  print;
}
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Binding Operator

 If we want m// or s/// to work on 
something other than $_ then we need to use 
the binding operator

 $name =~ s/Dave/David/;
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Metacharacters

 Matching something other than literal text
 ^ - matches start of string

 $ - matches end of string

 . - matches any character (except \n)

 \s - matches a whitespace character

 \S - matches a non-whitespace character
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More Metacharacters

 \d - matches any digit

 \D - matches any non-digit

 \w - matches any "word" character

 \W - matches any "non-word" character

 \b - matches a word boundary

 \B - matches anywhere except a word 
boundary
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Metacharacter Examples

 while (<FILE>) {
  print if m|^http|;
  print if /\bperl\b/;
  print if /\S/;
  print if /\$\d\.\d\d/;
}
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Quantifiers
 Specify the number of occurrences
 ? - match zero or one

 * -  match zero or more

 + - match one or more

 {n} - match exactly n

 {n,} - match n or more

 {n,m} - match between n and m
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Quantifier Examples

 while (<FILE>) {
  print if /whiske?y/i;
  print if /so+n/;
  print if /\d*\.\d+/;
  print if /\bA\w{3}\b/;
}
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Character Classes

 Define a class of characters to match
 /[aeiou]/ # match any vowel

 Use - to define a contiguous range
 /[A-Z]/ # match upper case letters

 Use ^ to match inverse set
 /[^A-Za-z] # match non-letters
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Alternation

 Use | to match one of a set of options
 /rose|martha|donna/i;

 Use parentheses for grouping
 /^(rose|martha|donna)$/i;
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Capturing Matches

 Parentheses are also used to capture parts of 
the matched string

 The captured parts are in $1, $2, etc…
 while (<FILE>) {
  if (/^(\w+)\s+(\w+)/) {
    print "The first word was $1\n";
    print "The second word was $2";
  }
}
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Returning Captures

 Captured values are also returned if the 
match operator is used in list context

 my @nums = $text =~ /(\d+)/g;
print "I found these integers:\n";
print "@nums\n";
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More Information

 perldoc perlre
 perldoc perlretut
 Mastering Regular Expressions – Jeffrey 

Freidl
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Smart Matching

 Introduced in Perl 5.10
 Powerful matching operator
 DWIM
 Examines operands
 Decides which match to apply
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Smart Match Operator
 ~~

 New operator
 Looks a bit like the binding operator (=~)

 Can be used in place of it
 $some_text =~ /some regex/

 Can be replaced with
 $some_text ~~ /some regex/
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Smarter Matching

 If one of its operands is a regex

 ~~ does a regex match

 Cleverer than that though
 %hash ~~ /regex/

 Regex match on hash keys
 @array ~~ /regex/

 Regex match on array elements
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More Smart Matches

 @array1 ~~ @array2

 Checks that arrays are the same
 $scalar ~~ @array

 Checks scalar exists in array
 $scalar ~~ %hash

 Checks scalar is a hash key



UKUUG
24th November 2009

136

Smart Scalar Matches

 What kind of match does this do?
 $scalar1 ~~ $scalar2

 It depends
 If both look like numbers

 ~~ acts like ==

 Otherwise

 ~~ acts like eq



  

Finding and Finding and 
Using ModulesUsing Modules
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Modules

 A module is a reusuable 'chunk' of code
 Perl comes with over 100 modules

(see “perldoc perlmodlib” for list)
 Perl has a repository of freely-available 

modules - the Comprehensive Perl Archive 
Network (CPAN)

− http://www.cpan.org

− http://search.cpan.org
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Finding Modules

 http://search.cpan.org
 Search by:

− module name

− distribution name

− author name

 Note: CPAN also contains newer versions of 
standard modules
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Installing Modules
(The Hard Way)

 Download distribution file
− MyModule-X.XX.tar.gz

 Unzip
− $ gunzip MyModule-X.XX.tar.gz

 Untar
− $ tar xvf MyModule-X.XX.tar

 Change directory
− $ cd MyModule-X.XX
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Installing Modules
(The Hard Way)

 Create Makefile
− $ perl Makefile.PL

 Build Module
− $ make

 Test Build
− $ make test

 Install Module
− $ make install
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Installing Modules
(The Hard Way)

 Note: May need root permissions for make 
install

 You can have your own personal module 
library

 perl Makefile.PL PREFIX=~/perl

− need to adjust @INC
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Installing Modules
(The Easy Way)

 CPANPLUS.pm is included with newer 
Perls

 Automatically carries out installation 
process

 Can also handle required modules
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Installing Modules
(The Easy Way)

 May not work (or may need some 
configuration) through a firewall

 May still need to be root
− Can use 'sudo'
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Installing Modules
(The Easy Way)

 cpanp
[ ... some stuff ... ]
CPAN Terminal> install Some::Module
[ ... some more stuff ... ]
CPAN Terminal> quit

 Or
 cpanp -i Some::Module
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Using Modules

 Two types of module:
− Functions vs Objects

 Functional modules export new subroutines 
and variables into your program

 Object modules usually don't
 Difference not clear cut (e.g. CGI.pm)
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Using Functional Modules
 Import defaults:
 use My::Module;

 Import optional components:
 use My::Module qw(my_sub
                  @my_arr);
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Using Functional Modules
 Import defined sets of components:
 use My:Module qw(:advanced);

 Use imported components:
 $data = my_sub(@my_arr);
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Using Object Modules

 Use the module:
 use My::Object;

 Create an object:
 $obj = My::Object->new;

− Note: new is just a convention

 Interact using object's methods
 $obj->set_name($name);
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Useful Standard Modules
 constant
 Time::Local
 Text::ParseWords
 Getopt::Std
 Cwd
 File::Basename

 File::Copy
 POSIX
 CGI
 Carp
 Benchmark
 Data::Dumper
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Useful Non-Standard 
Modules

 Template
 DBI
 DBIx::Class
 DateTime
 HTML::Parser
 HTML::Tidy

 LWP
 WWW::Mechanize
 Email::Simple
 XML::LibXML
 XML::Feed
 Moose



  

That's All FolksThat's All Folks
• Any Questions?
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