

IntermediateIntermediate
PerlPerl

Dave Cross
Magnum Solutions Ltd

dave@mag-sol.com

UKUUG
25th November 2009

2

What We Will Cover

 Types of variable
 Strict and warnings
 References
 Sorting
 Reusable Code
 Object Orientation

UKUUG
25th November 2009

3

What We Will Cover

 Testing
 Dates and Times
 Templates
 Databases
 Further Information

UKUUG
25th November 2009

4

Schedule

 09:45 – Begin
 11:15 – Coffee break (15 mins)
 13:00 – Lunch (60 mins)
 14:00 – Begin
 15:30 – Coffee break (15 mins)
 17:00 – End

UKUUG
25th November 2009

5

Resources

 Slides available on-line
− http://mag-sol.com/train/public/2009-11/ukuug

 Also see Slideshare
− http://www.slideshare.net/davorg/slideshows

 Get Satisfaction
− http://getsatisfaction.com/magnum

Types of VariableTypes of Variable

UKUUG
25th November 2009

7

Types of Variable
 Perl variables are of two types
 Important to know the difference
 Lexical variables are created with my

 Package variables are created by our

 Lexical variables are associated with a code
block

 Package variables are associated with a
package

UKUUG
25th November 2009

8

Lexical Variables
 Created with my
 my ($doctor, @timelords,
 %home_planets);

 Live in a pad (associated with a block of
code)

− Piece of code delimited by braces

− Source file

UKUUG
25th November 2009

9

Lexical Variables
 Only visible within enclosing block
 while (<$fh>) {
 my $data = munge($_);
}
can't see $data here

 "Lexical" because the scope is defined
purely by the text

UKUUG
25th November 2009

10

Packages

 All Perl code is associated with a package
 A new package is created with package

− package MyPackage;

 Think of it as a namespace
 Used to avoid name clashes with libraries
 Default package is called main

UKUUG
25th November 2009

11

Package Variables
 Live in a package's symbol table
 Can be referred to using a fully qualified

name
− $main::doctor

− @Gallifrey::timelords

UKUUG
25th November 2009

12

Package Variables
 Package name not required within own

package
 package Gallifrey;
@timelords = ('Doctor', 'Master',
 'Rani');

 Can be seen from anywhere in the package
(or anywhere at all when fully qualified)

UKUUG
25th November 2009

13

Declaring Package Vars

 Can be predeclared with our

 our ($doctor, @timelords,
 %home_planet);

 Or (in older Perls) with use vars

 use vars qw($doctor
 @timelords
 %home_planet);

UKUUG
25th November 2009

14

Lexical or Package
 When to use lexical variables or package

variables?
 Simple answer

− Always use lexical variables

 More complete answer
− Always use lexical variables

− Except for a tiny number of cases

 http://perl.plover.com/local.html

UKUUG
25th November 2009

15

local
 You might see code that uses local
 local $variable;

 This doesn't do what you think it does
 Badly named function
 Doesn't create local variables
 Creates a local copy of a package variable
 Can be useful

− In a small number of cases

UKUUG
25th November 2009

16

local Example
 $/ is a package variable

 It defines the input record separator
 You might want to change it
 Always localise changes
 {
 local $/ = “\n\n”;
 while (<FILE>) {
 ...
 }
}

Strict and Strict and
WarningsWarnings

UKUUG
25th November 2009

18

Coding Safety Net

 Perl can be a very loose programming
language

 Two features can minimise the dangers
 use strict / use warnings

 A good habit to get into
 No serious Perl programmer codes without

them

UKUUG
25th November 2009

19

use strict

 Controls three things
 use strict 'refs' – no symbolic

references
 use strict 'subs' – no barewords
 use strict 'vars' – no undeclared

variables
 use strict – turn on all three at once

 turn them off (carefully) with no strict

UKUUG
25th November 2009

20

use strict 'refs'
 Prevents symbolic references
 Using a variable as another variable's name
 $what = 'dalek';
$$what = 'Karn';
sets $dalek to 'Karn'

 What if 'dalek' came from user input?
 People often think this is a cool feature
 It isn't

UKUUG
25th November 2009

21

use strict 'refs' (cont)

 Better to use a hash
 $what = 'dalek';
$alien{$what} = 'Karn';

 Self contained namespace
 Less chance of clashes
 More information (e.g. all keys)

UKUUG
25th November 2009

22

use strict 'subs'

 No barewords
 Bareword is a word with no other

interpretation
 e.g. word without $, @, %, &
 Treated as a function call or a quoted string
 $dalek = Karn;

 May clash with future reserved words

UKUUG
25th November 2009

23

use strict 'vars'

 Forces predeclaration of variable names
 Prevents typos
 Less like BASIC - more like Ada
 Thinking about scope is good

UKUUG
25th November 2009

24

use warnings

 Warns against dubious programming habits
 Some typical warnings

− Variables used only once

− Using undefined variables

− Writing to read-only file handles

− And many more...

UKUUG
25th November 2009

25

Allowing Warnings
 Sometimes it's too much work to make code

warnings clean
 Turn off use warnings locally
 Turn off specific warnings
 {
 no warnings 'deprecated';
 # dodgy code ...
}

 See perldoc perllexwarn

ReferencesReferences

UKUUG
25th November 2009

Introducing References

 A reference is a bit like pointer in languages
like C and Pascal (but better)

 A reference is a unique way to refer to a
variable.

 A reference can always fit into a scalar
variable

 A reference looks like
SCALAR(0x20026730)

UKUUG
25th November 2009

Creating References
 Put \ in front of a variable name

− $scalar_ref = \$scalar;

− $array_ref = \@array;

− $hash_ref = \%hash;

 Can now treat it just like any other scalar
− $var = $scalar_ref;

− $refs[0] = $array_ref;

− $another_ref = $refs[0];

UKUUG
25th November 2009

Creating References

 [LIST] creates anonymous array and
returns a reference

 $aref = ['this', 'is', 'a', 'list'];
$aref2 = [@array];

 { LIST } creates anonymous hash and
returns a reference

 $href = { 1 => 'one', 2 => 'two' };
$href = { %hash };

UKUUG
25th November 2009

Creating References

 @arr = (1, 2, 3, 4);
$aref1 = \@arr;
$aref2 = [@arr];
print "$aref1\n$aref2\n";

 Output
ARRAY(0x20026800)
ARRAY(0x2002bc00)

 Second method creates a copy of the array

UKUUG
25th November 2009

Using Array References
 Use {$aref} to get back an array that you

have a reference to
 Whole array
 @array = @{$aref};

 @rev = reverse @{$aref};

 Single elements
 $elem = ${$aref}[0];

 ${$aref}[0] = 'foo';

UKUUG
25th November 2009

Using Hash References
 Use {$href} to get back a hash that you

have a reference to
 Whole hash
 %hash = %{$href};

 @keys = keys %{$href};

 Single elements
 $elem = ${$href}{key};

 ${$href}{key} = 'foo';

UKUUG
25th November 2009

Using References

 Use arrow (->) to access elements of arrays
or hashes

 Instead of ${$aref}[0] you can use
$aref->[0]

 Instead of ${$href}{key} you can use
$href->{key}

UKUUG
25th November 2009

Using References

 You can find out what a reference is
referring to using ref

 $aref = [1, 2, 3];
print ref $aref; # prints ARRAY

 $href = { 1 => 'one',
 2 => 'two' };
print ref $href; # prints HASH

UKUUG
25th November 2009

Why Use References?

 Parameter passing
 Complex data structures

UKUUG
25th November 2009

Parameter Passing
 What does this do?
 @arr1 = (1, 2, 3);
@arr2 = (4, 5, 6);
check_size(@arr1, @arr2);

sub check_size {
 my (@a1, @a2) = @_;
 print @a1 == @a2 ?
 'Yes' : 'No';
}

UKUUG
25th November 2009

Why Doesn't It Work?

 my (@a1, @a2) = @_;

 Arrays are combined in @_

 All elements end up in @a1

 How do we fix it?
 Pass references to the arrays

UKUUG
25th November 2009

Another Attempt

 @arr1 = (1, 2, 3);
@arr2 = (4, 5, 6);
check_size(\@arr1, \@arr2);

sub check_size {
 my ($a1, $a2) = @_;
 print @$a1 == @$a2 ?
 'Yes' : 'No';
}

UKUUG
25th November 2009

Complex Data Structures

 Another good use for references
 Try to create a 2-D array
 @arr_2d = ((1, 2, 3),
 (4, 5, 6),
 (7, 8, 9));

 @arr_2d contains
(1, 2, 3, 4, 5, 6, 7, 8, 9)

 This is known a array flattening

UKUUG
25th November 2009

Complex Data Structures

 2D Array using references
 @arr_2d = ([1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]);

 But how do you access individual elements?
 $arr_2d[1] is ref to array (4, 5, 6)

 $arr_2d[1]->[1] is element 5

UKUUG
25th November 2009

Complex Data Structures
 Another 2D Array
 $arr_2d = [[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]];

 $arr_2d->[1] is ref to array (4, 5, 6)

 $arr_2d->[1]->[1] is element 5

 Can omit intermediate arrows
 $arr_2d->[1][1]

UKUUG
25th November 2009

More Data Structures

 Imagine the following data file
 Jones,Martha,UNIT
Harkness,Jack,Torchwood
Smith,Sarah Jane,Journalist

 What would be a good data structure?
 Hash for each record
 Array of records
 Array of hashes

UKUUG
25th November 2009

More Data Structures
 Building an array of hashes
 my @records;
my @cols =
 ('s_name', 'f_name', 'job');

while (<FILE>) {
 chomp;
 my %rec;
 @rec{@cols} = split /,/;
 push @records, \%rec;
}

UKUUG
25th November 2009

Using an Array of Hashes

foreach (@records) {
 print "$_->{f_name} ",
 "$_->{s_name} ".
 "is a $_->{job}\n";
}

UKUUG
25th November 2009

Complex Data Structures

 Many more possibilities
− Hash of hashes

− Hash of lists

− Multiple levels (list of hash of hash, etc.)

 Lots of examples in “perldoc perldsc” (the
data structures cookbook)

SortingSorting

UKUUG
25th November 2009

47

Sorting

 Perl has a sort function that takes a list and
sorts it

 @sorted = sort @array;

 Note that it does not sort the list in place
 @array = sort @array;

UKUUG
25th November 2009

48

Sort Order

 The default sort order is ASCII
 @chars = sort 'e', 'b', 'a', 'd', 'c';
@chars has ('a', 'b', 'c', 'd', 'e')

 This can sometimes give strange results
 @chars = sort 'E', 'b', 'a', 'D', 'c';
@chars has ('D', 'E', 'a', 'b', 'c')

 @nums = sort 1 .. 10;
@nums has (1, 10, 2, 3, 4,
5, 6, 7, 8, 9)

UKUUG
25th November 2009

49

Sorting Blocks
 Can add a "sorting block" to customise sort

order
 @nums =
 sort { $a <=> $b } 1 .. 10;

 Perl puts two of the values from the list into
$a and $b

 Block compares values and returns -1, 0 or 1
 <=> does this for numbers (cmp for strings)

UKUUG
25th November 2009

50

Sort Examples

 Other simple sort examples
 sort { $b cmp $a } @words

 sort { lc $a cmp lc $b } @words

 sort { substr($a, 4)
 cmp substr($b, 4) } @lines

UKUUG
25th November 2009

51

Sorting Subroutines
 Can also use a subroutine name in place of a

code block
 @words = sort dictionary @words;

sub dictionary {
 # Don't change $a and $b
 my ($A, $B) = ($a, $b);
 $A =~ s/\W+//g;
 $B =~ s/\W+//g;
 $A cmp $B;
}

UKUUG
25th November 2009

52

Sorting Names

 my @names = ('Rose Tyler',
 'Martha Jones',
 'Donna Noble',
 'Amy Pond');

@names = sort sort_names @names;

 Need to write sort_names so that it sorts on
surname and then forename.

UKUUG
25th November 2009

53

Sorting Names (cont)

 sub sort_names {
 my @a = split /\s/, $a;
 my @b = split /\s/, $b;

 return $a[1] cmp $b[1]
 or $a[0] cmp $b[1];
}

UKUUG
25th November 2009

54

More Complex Sorts
 sub sort_names {
 my @a = split /\s/, $a;
 my @b = split /\s/, $b;

 return $a[1] cmp $b[1]
 or $a[0] cmp $b[0];
}

 Can be inefficient on large amounts of data
 Multiple splits on the same data

UKUUG
25th November 2009

55

More Efficient Sorts

 Split each row only once
 @split = map { [split] } @names;

 Do the comparison
 @sort = sort { $a->[1] cmp $b->[1]
 or $a->[0] cmp $b->[0] } @split;

 Join the data together
 @names = map { join ' ', @$_ }
 @sort;

UKUUG
25th November 2009

56

Put It All Together

 Can rewrite this as
 @names = map { join ' ', @$_ }
 sort { $a->[1] cmp $b->[1]
 || $a->[0] cmp $b->[0] }
 map { [split] } @names;

 All functions work on the output from the
previous function in the chain

UKUUG
25th November 2009

57

Schwartzian Transform

 @data_out =
 map { $_->[1] }
 sort { $a->[0] cmp $a->[0] }
 map { [func($_), $_] }
 @data_in;

 Old Lisp trick
 Named after Randal Schwartz

Reusable CodeReusable Code

UKUUG
25th November 2009

59

Why Write Modules?

 Code reuse
 Prevent reinventing the wheel
 Easier to share across projects
 Better design, more generic

UKUUG
25th November 2009

60

Basic Module
 use strict;
use warnings;

package MyModule;

use Exporter;
our @ISA = ('Exporter');
our @EXPORT = ('my_sub');

sub my_sub {
 print "This is my_sub\n";
}

1;

UKUUG
25th November 2009

61

Using MyModule.pm

 use MyModule;

my_sub is now available
for use within your
program

my_sub();
Prints "This is my_sub()"

UKUUG
25th November 2009

62

Explaining MyModule.pm

 Much of MyModule.pm is concerned with
exporting subroutine names

 Subroutine full name
− MyModule::my_sub()

 Exporting abbreviates that
− my_sub()

UKUUG
25th November 2009

63

Packages Revisited
 Every subroutine lives in a package
 The default package is main

 New packages are introduced with the
package keyword

 A subroutine's full name is package::name

 Package name can be omitted from within
same package

 Like family names

UKUUG
25th November 2009

64

Using Exporter

 The module Exporter.pm handles the export
of subroutine (and variable) names

 Exporter.pm defines a subroutine called
import

 import is automatically called whenever a
module is used

 import puts references to our subroutines
into our caller's symbol table

UKUUG
25th November 2009

65

How Exporter Works
 How does MyModule use Exporter's import

subroutine?
 We make use of inheritance
 Inheritance is defined using the @ISA array

 If we call a subroutine that doesn't exist in
our module, then the modules in @ISA are
also checked

 Therefore Exporter::import is called

UKUUG
25th November 2009

66

Exporting Symbols

 How does import know which subroutines to
export?

 Exports are defined in @EXPORT or
@EXPORT_OK

 Automatic exports are defined in @EXPORT

 Optional exports are defined in @EXPORT_OK

UKUUG
25th November 2009

67

Exporting Symbol Sets
 You can define sets of exports in
%EXPORT_TAGS

 Key is set name
 Value is reference to an array of names
 our %EXPORT_TAGS =
 (advanced => [qw(my_sub
 my_other_sub)];

use MyModule qw(:advanced);
my_sub();
my_other_sub();

UKUUG
25th November 2009

68

Why Use
@EXPORT_OK?

 Give your users the choice of which
subroutines to import

 Less chances of name clashes
 Use @EXPORT_OK in preference to @EXPORT

 Document the exported names and sets

UKUUG
25th November 2009

69

Exporting Variables

 You can also export variables
 @EXPORT_OK = qw($scalar,
 @array,
 %hash);

 Can be part of export sets
 Any variables you export must be package

variables

UKUUG
25th November 2009

70

Writing Modules The
Easy Way

 A lot of module code is similar
 Don't write the boilerplate yourself
 Copy from an existing module
 Or look at Module::Starter

Object Object
OrientationOrientation

UKUUG
25th November 2009

72

OO Programming
 Traditional programming has subroutines

acting on methods
 OO inverts this
 Classes contain methods which define their

actions
 Objects are instances of classes
 Perl has an OO system bolted on
 Best of both worlds

UKUUG
25th November 2009

73

Object Oriented Perl

 An Object is just a module that obeys certain
extra rules

 Three rules of Perl objects
− A Class is a package

− An Object is a reference (usually to a hash)

− A Method is a subroutine

 bless tells a reference what kind of object it
is

UKUUG
25th November 2009

74

A Simple Object

 package MyObject;

sub new {
 my $class = shift;
 my $name = shift;

 my $self = { name => $name };

 return bless $self, $class;
}

UKUUG
25th November 2009

75

A Simple Object (cont)

 sub get_name {
 my $self = shift;
 return $self->{name};
}

sub set_name {
 my $self = shift;
 $self->{name} = shift;
}

1;

UKUUG
25th November 2009

76

Using MyObject.pm
 use MyObject;
my $obj =
 MyObject->new('Dave');

print $obj->get_name;
prints 'Dave'

$obj->set_name('David');
print $obj->get_name;
prints 'David'

UKUUG
25th November 2009

77

Moose

 Easier OO Perl
 Moose is on CPAN
 Based on Perl 6 OO
 Well worth investigating

UKUUG
25th November 2009

78

Moose Example

 package MyModule;
use Moose;

has name => (is => 'rw',
 isa => 'Str',
 required => 1);

1;

UKUUG
25th November 2009

79

Further Information

 perldoc perlboot
 perldoc perltoot
 perldoc perlobj
 perldoc perlbot
 perldoc Moose (if it is installed)
 Object Oriented Perl (Conway)

TestingTesting

UKUUG
25th November 2009

81

Testing

 Never program without a safety net
 Does your code do what it is supposed to

do?
 Will your code continue to do what it is

supposed to do?
 Write unit tests
 Run those tests all the time

UKUUG
25th November 2009

82

When to Run Tests

 As often as possible
 Before you add a feature
 After you have added a feature
 Before checking in code
 Before releasing code
 Constantly, automatically

UKUUG
25th November 2009

83

Testing in Perl

 Perl makes it easy to write test suites
 A lot of work in this area over the last eight

years
 Test::Simple and Test::More included in

Perl distribution
 Many more testing modules on CPAN

UKUUG
25th November 2009

84

Simple Test Program

 use Test::More tests => 4;

BEGIN { use_ok('My::Object'); }

ok(my $obj = My::Object->new);

isa_ok($obj, 'My::Object');

$obj->set_foo('Foo');

is($obj->get_foo, 'Foo');

UKUUG
25th November 2009

85

Simple Test Output
 $ prove -v test.t
test....
1..4
ok 1 - use My::Object;
ok 2
ok 3 - The object isa My::Object
ok 4
ok
All tests successful.
Files=1, Tests=4, 0 wallclock secs
(0.02 usr 0.00 sys + 0.05 cusr 0.00
csys = 0.07 CPU)
Result: PASS

UKUUG
25th November 2009

86

Adding Test Names
 use Test::More tests => 4;
BEGIN { use_ok('My::Object'); }

ok(my $obj = My::Object->new,
 'Got an object');

isa_ok($obj, 'My::Object');

$obj->set_foo('Foo');

is($obj->get_foo, 'Foo',
 'The foo is "Foo"');

UKUUG
25th November 2009

87

Output With Names
 $ prove -v test2.t
test2....
1..4
ok 1 - use My::Object;
ok 2 - got an object
ok 3 - The object isa My::Object
ok 4 - The foo is "Foo"
ok
All tests successful.
Files=1, Tests=4, 0 wallclock secs
(0.02 usr 0.00 sys + 0.05 cusr 0.00
csys = 0.07 CPU)
Result: PASS

UKUUG
25th November 2009

88

Using prove
 A command line tool for running tests
 Runs given tests using Test::Harness
 Comes with the Perl distribution
 Command line options

− -v verbose output

− -r recurse

− -s shuffle tests

− Many more

UKUUG
25th November 2009

89

Test Anything Protocol

 Perl tests have been spitting out “ok 1” and
not “ok 2” for years

 Now this ad-hoc format has a definition and
a name

 The Test Anything Protocol (TAP)
 See Test::Harness::TAP (documentation

module) and TAP::Parser

UKUUG
25th November 2009

90

TAP Output

 More possibilities for test output
− TAP::Harness::Color

− Test::TAP::HTMLMatrix

 Make sense of your test results

UKUUG
25th November 2009

91

More Testing Modules

 Dozens of testing modules on CPAN
 Some of my favourites
 Test::File
 Test::Exception, Test::Warn
 Test::Differences
 Test::XML (includes Test::XML::XPath)

UKUUG
25th November 2009

92

More Information

 Perl Testing: A Developer's Notebook (Ian
Langworth & chromatic)

 perldoc Test::Tutorial
 perldoc Test::Simple
 perldoc Test::More
 etc...

Dates and TimesDates and Times

UKUUG
25th November 2009

94

Dates & Times
 Perl has built-in functions to handle dates

and times
 time – seconds since 1st Jan 1970

 localtime – convert to human-readable

 timelocal (in Time::Local) – inverse of
localtime

 strftime (in POSIX) – formatting dates
and times

UKUUG
25th November 2009

95

Dates & Times on CPAN

 Look to CPAN for a better answer
 Dozens of date/time modules on CPAN
 Date::Manip is almost never what you want
 Date::Calc, Date::Parse, Class::Date,

Date::Simple, etc
 Which one do you choose?

UKUUG
25th November 2009

96

Perl DateTime Project

 http://datetime.perl.org/
 "The DateTime family of modules present a

unified way to handle dates and times in
Perl"

 "unified" is good
 Dozens of modules that work together in a

consistent fashion

UKUUG
25th November 2009

97

Using DateTime

 use DateTime;

my $dt = DateTime->now;
say $dt;
2009-11-25T15:06:07
say $dt->dmy, "\n";
2009-11-25
say $dt->hms, "\n";
15:06:07

UKUUG
25th November 2009

98

Using DateTime

 use DateTime;

my $dt = DateTime->new(year => 2009,
 month => 11,
 day => 25);

say $dt->ymd('/'), "\n";
2009/11/25
say $dt->month; # 11
say $dt->month_name; # November

UKUUG
25th November 2009

99

Arithmetic

 A DateTime object is a point in time
 For date arithmetic you need a duration
 Number of years, weeks, days, etc

UKUUG
25th November 2009

100

Arithmetic

 use DateTime;
my $dt = DateTime->new(year => 2009,
 month => 11,
 day => 25);

my $two_weeks =
DateTime::Duration->new(weeks => 2);
$dt += $two_weeks;
say $dt;
2009-12-08T00:00:00

UKUUG
25th November 2009

101

Formatting Output

 use DateTime;
my $dt = DateTime->new(year => 2009,
 month => 11,
 day => 25);
say $dt->strftime('%A, %d %B %Y');
Wednesday, 25 November 2009

 Control input format with
DateTime::Format::Strptime

UKUUG
25th November 2009

102

Parsing & Formatting
 Ready made parsers and formatters for

popular date and time formats
 DateTime::Format::HTTP
 DateTime::Format::MySQL
 DateTime::Format::Excel
 DateTime::Format::Baby

− the big hand is on...

UKUUG
25th November 2009

103

Alternative Calendars

 Handling non-standard calendars
 DateTime::Calendar::Julian
 DateTime::Calendar::Hebrew
 DateTime::Calendar::Mayan
 DateTime::Fiction::JRRTolkien::Shire

UKUUG
25th November 2009

104

Calendar Examples
 use DateTime::Calendar::Mayan;

my $dt = DateTime::Calendar::Mayan->now;

say $dt->date; # 12.19.16.14.13

 use DateTime::Fiction::JRRTolkien::Shire;

my $dt =
 DateTime::Fiction::JRRTolkien::Shire->now;

say $dt->on_date; # Trewsday 9 Blotmath 7473

TemplatesTemplates

UKUUG
25th November 2009

106

Templates
 Many people use templates to produce web

pages
 Advantages are well known
 Standard look and feel (static/dynamic)
 Reusable components
 Separation of code logic from display logic
 Different skill-sets (HTML vs Perl)

UKUUG
25th November 2009

107

Non-Web Templates

 The same advantages apply to non-web
areas

 Reports
 Business documents
 Configuration files
 Anywhere you produce output

UKUUG
25th November 2009

108

DIY Templating

 Must be easy - so many people do it
 See perlfaq4
 “How can I expand variables in text

strings?”

UKUUG
25th November 2009

109

DIY Templating

 $text =
'this has a $foo in it and a $bar';

%user_defs = (
 foo => 23,
 bar => 19,
);

$text =~ s/\$(\w+)/$user_defs{$1}/g;

 Don't do that

UKUUG
25th November 2009

110

Templating Options
 Dozens of template modules on CPAN
 Text::Template, HTML::Template, Mason,

Template Toolkit
 Many, many more
 Questions to consider

− HTML only?

− Template language

 I recommend the Template Toolkit

UKUUG
25th November 2009

111

Template Toolkit
 http://tt2.org/
 Very powerful
 Both web and non-web
 Simple template language
 Plugins give access to much of CPAN
 Can use Perl code if you want

− But don't do that

UKUUG
25th November 2009

112

Good Book Too!

UKUUG
25th November 2009

113

The Template Equation

 Data + Template = Output
 Data + Alternative Template = Alternative

Output
 Different views of the same data
 Only the template changes

UKUUG
25th November 2009

114

Simple TT Example
 use Template;
use My::Object;
my ($id, $format) = @ARGV;
$format ||= 'html';
my $obj = My::Object->new($id)
 or die;
my $tt = Template->new;
$tt->process("$format.tt",
 { obj => $obj },
 "$id.$format")
 or die $tt->error;

UKUUG
25th November 2009

115

html.tt
 <html>
 <head>
 <title>[% obj.name %]</title>
 </head>
 <body>
 <h1>[% obj.name %]<h1>
 <p>

 [% obj.desc %]</p>

 [% FOREACH child IN obj.children -%]
 [% child.name %]
 [% END %]
 </body>
</html>

UKUUG
25th November 2009

116

text.tt
 [% obj.name | upper %]

Image: [% obj.img %]
[% obj.desc %]

[% FOREACH child IN obj.children -%]
 * [% child.name %]
[% END %]

UKUUG
25th November 2009

117

Adding New Formats

 No new code required
 Just add new output template
 Perl programmer need not be involved

UKUUG
25th November 2009

118

Equation Revisited

 Data + Template = Output
− Template Toolkit

 Template + Output = Data
− Template::Extract

 Data + Output = Template
− Template::Generate

DatabasesDatabases

UKUUG
25th November 2009

120

Databases

 A large proportion of applications need to
talk to databases

 Perl has tools to make this as simple as
possible

 DBI is the basis for all modern Perl database
access

 You should be using DBI
− or something based on DBI

UKUUG
25th November 2009

121

How DBI Works
 Program uses DBI.pm
 Create a connection to a particular type of

database
 DBD module gets loaded
 DBD translates from DBI API to database

specific calls
 DBD translates returned data into Perl data

stuctures

UKUUG
25th November 2009

122

Connecting to a DB
 use DBI;
my $dbh = DBI->connect(
 "dbi:mysql:$some_stuff",
 $user, $pass
);

 “mysql” is the name of the DBD
− DBD::mysql

 Easy to port a program to another database
 Just change the connection line

UKUUG
25th November 2009

123

Selecting Data

 Prepare the SQL statement
 my $sth = $dbh->prepare(
 'select name, genre from artist'
);

 my $sth = $dbh->prepare(
 "select title,
 from song
 where artist = '$id'");

 Check return values (syntax errors)

UKUUG
25th November 2009

124

Selecting Data (cont)

 Execute the statement
 $sth->execute

 Still need to check for errors

UKUUG
25th November 2009

125

Selecting Data (cont)

 Fetch the returned data
 while (my @row =
 $sth->fetchrow_array){
 print "@row\n";
}

 Fields are returned in the same order as they
are defined in the query

UKUUG
25th November 2009

126

Other Select Functions

 Other fetch methods are available:
− fetchrow_arrayref

− fetchrow_hashref (keys are column
names)

− fetchall_arrayref

− fetch (alias for fetchrow_arrayref)

 Many more added each week

UKUUG
25th November 2009

127

Some Caveats
 If you're using a fetch method that returns an

array
− Never use "select *"

− For (hopefully) obvious reasons

 If you're using a fetch method that returns a
hash

− Ensure all your columns have (unique) names

− For (hopefully) obvious reasons

UKUUG
25th November 2009

128

Insert, Update & Delete
 Statements that don't return data can be

executed the same way
 my $sql = "update table1
 set col1 = '$val'
 where id_col = $id";
my $sth = $dbh->prepare($sql);
$sth->execute;

 But there's a shortcut
 $rows = $dbh->do($sql);

UKUUG
25th November 2009

129

Multiple Insertions
 while (<FILE>) {
 chomp;
 my @data = split;
 my $sql = "insert into tab
 values ($data[0],
 $data[1],
 $data[2]");
 $dbh->do($sql);
}

 Recompiles the SQL every time
 Very inefficient

UKUUG
25th November 2009

130

Binding Data
 Prepare statement once, use many times
 my $sql = "insert into tab
 values (?, ?, ?)";
my $sth = $dbh->prepare($sql);
while (<FILE>) {
 my @data = split;
 bind_param(1, $data[0]);
 bind_param(2, $data[1]);
 bind_param(3, $data[2]);
 $sth->execute;
}

 Bonus - binding handles quoting for you

UKUUG
25th November 2009

131

Binding Data (cont)

 Even easier – extra parameters to execute
 my $sql = "insert into tab
 values (?, ?, ?)";
my $sth = $dbh->prepare($sql);

while (<FILE>) {
 chomp;
 my @data = split;
 $sth->execute(@data);
}

UKUUG
25th November 2009

132

Unnamed Placeholders
 Having unnamed placeholders can get

confusing
 my $sql = 'insert into big_table
 values(
?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?,
?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?,
?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)';

 Good chance of getting the variables in the
wrong order

 By the way - there's a basic maintainability
error in that SQL

UKUUG
25th November 2009

133

Bind By Name
 my $sql = 'insert into big_table
 (id, code, name, addr, email,
 url, ...)
 values (:id, :code, :name,
 :addr, :email, :url,
 ...);

my $sth = $sql->prepare($sql);

$sth->bind_param(':id', $id);
$sth->bind_param(':code', $code);
etc

$sth->execute;

UKUUG
25th November 2009

134

Even Easier Binding

 Store your data in a hash
 my %data = (id => 42,
 code => 'H2G2',
 ...);

and later...
foreach my $col (keys %data) {
 $sth->bind_param(":$col",
 $data{$col};
}

UKUUG
25th November 2009

135

Downsides
 Many DBDs don't support it
 Which is a bit of a bugger
 Oracle does
 So does PostgreSQL (tho' the docs

discourage its use)
 Check your DBD documentation
 Email your friendly neighbourhood DBD

author

UKUUG
25th November 2009

136

Some Tips
 Make your life as easy as possible
 Don't hard-code connection data

− Config file, command line options, environment
variables

 Send all of your data access through one
function

 Store SQL queries externally and reference
them by name

 Use named bind parameters if you can

UKUUG
25th November 2009

137

Sample Code
 my $dbh;

sub run_sql {
 my ($sql_statement, %args) = @_;
 my $sql = get_sql($sql_statement);
 $dbh = get_dbh() unless $dbh;

 my $sth = $dbh->prepare($sql);
 foreach my $col (keys %args) {
 $sth->bind_param(":$col",
 $args{$col});
 }

 return $sth->execute;
}

UKUUG
25th November 2009

138

Not Writing SQL
 Writing SQL is boring
 It's often similar

− Select the id and name from this table

− Select all the details of this row

− Select something about related tables

− Update this row with these values

− Insert a new record with these values

− Delete this record

 Must be a better way

UKUUG
25th November 2009

139

Object Relational
Mapping

 Mapping database relations into objects
 Tables (relations) map onto classes
 Rows (tuples) map onto objects
 Columns (attributes) map onto attributes
 Don't write SQL

UKUUG
25th November 2009

140

Replacing SQL

 Instead of
 SELECT *
FROM my_table
WHERE my_id = 10

 and then dealing with the
prepare/execute/fetch code

UKUUG
25th November 2009

141

Replacing SQL

 We can write
 use My::Object;

warning! not a real orm
my $obj = My::Object->retrieve(10)
$obj->name('A New Name');
$obj->save;

 Or something similar

UKUUG
25th November 2009

142

ORM on CPAN

 Very many ORMs on CPAN
 Tangram
 Alzabo
 Class::DBI
 DBIx::Class

− The current favourite

− Highly recommended

UKUUG
25th November 2009

143

Further Information

 perldoc DBI
 perldoc DBD::*

− DBD::mysql

− DBD::Oracle

− Etc...

 perldoc DBIx::Class

That's All FolksThat's All Folks
• Any Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Creating References
	Slide 29
	Slide 30
	Using References
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Why Use References?
	Why Use Reference?
	Why Use References
	Complex Data Structures
	Slide 40
	Complex Data Structure
	More Complex Data Structures
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144

