e RneuIane
Par

R
y = -) I
A

= - DaveCross

What We Will Cover

* Types of variable

* Strict and warnings
* References

* Sorting

* Reusable Code

* Object Orientation

UKUUG
25" November 2009

What We Will Cover

* Testing

* Dates and Times
* Templates

* Databases

 Further Information

UKUUG
25" November 2009

Schedule

* 09:45 — Begin

* 11:15 — Coffee break (15 mins)
* 13:00 — Lunch (60 mins)

* 14:00 — Begin

* 15:30 — Coffee break (15 mins)
* 17:00 — End

UKUUG
25" November 2009

Resources

* Slides available on-line

- http://mag-sol.com/train/public/2009-11/ukuug
* Also see Slideshare

- http://www.slideshare.net/davorg/slideshows
* Get Satisfaction

- http://getsatisfaction.com/magnum

UKUUG
25" November 2009

Tyozs of Varlzlols

Types of Variable

* Perl variables are of two types

* Important to know the difference

e Lexical variables are created with my
* Package variables are created by our

e [.exical variables are associated with a code
block

* Package variables are associated with a
package

UKUUG
25" November 2009

| exical Variables

e Created with my

e my ($doctor, @timelords,
%home_planets);

* Live in a pad (associated with a block of
code)

- Piece of code delimited by braces

— Source file

UKUUG
25" November 2009

| exical Variables

* Only visible within enclosing block
. while (<$fh>) {

my $data = munge($_);
}

can't see $data here

* "Lexical" because the scope is defined
purely by the text

UKUUG
25" November 2009

25" November 2009

Packages

All Perl code is associated with a package

A new package is created with package

- package MyPackage;

Thin]

K of it as a namespace

Used

' to avoid name clashes with libraries

Default package is called main

UKUUG

Package Variables

* Live in a package's symbol table

* Can be referred to using a fully qualified
name

- $main: :doctor
- @Gallifrey::timelords

UKUUG
25" November 2009

Package Variables

* Package name not required within own
package

« package Gallifrey;
@timelords = ('Doctor', 'Master',
'Rani');

* Can be seen from anywhere in the package
(or anywhere at all when fully qualified)

UKUUG
25" November 2009

Declaring Package Vars

e Can be predeclared with our

« our ($doctor, @timelords,
%home_planet);

* Or (in older Perls) with use vars

e Use vars gw($doctor
@timelords
%home_planet);

UKUUG
25" November 2009

Lexical or Package

* When to use lexical variables or package
variables?

* Simple answer
- Always use lexical variables
* More complete answer

- Always use lexical variables

- Except for a tiny number of cases

* http://perl.plover.com/local.html

UKUUG
25" November 2009

local

* You might see code that uses local
« local $variable;

* This doesn't do what you think it does

* Badly named function

* Doesn't create local variables

* Creates a local copy of a package variable

e Can be useful

- In a small number of cases
UKUUG

25" November 2009

local Example

* $/ is a package variable

* It defines the input record separator
* You might want to change it

* Always localise changes
° {
local $/ = “\n\n”";
while (<FILE>) {

¥
UI}JUG

25" November 2009

Coding Safety Net

* Perl can be a very loose programming
language

* Two features can minimise the dangers
* use strict/use warnings
* A good habit to get into

* No serious Perl programmer codes without
them

UKUUG
25" November 2009

Open Source Consultaney, Development & Training

use strict

* Controls three things

* use strict 'refs' —no symbolic
references

e use strict 'subs' —no barewords

* use strict 'vars' -no undeclared
variables

* Use strict — turn on all three at once

e turn them off (carefully) with no strict

UKUUG
25" November 2009

Open Source Consultaney, Development & Training

use strict 'refs'

* Prevents symbolic references

* Using a variable as another variable's name

« $what = 'dalek';
$$what = 'Karn';
sets $dalek to 'Karn'

* What if 'dalek' came from user input?
* People often think this is a cool feature
* [tisn't

UKUUG
25" November 2009

use strict ‘refs' (cont)

 Better to use a hash

« $Swhat = 'dalek';
$alien{$what} = 'Karn';

* Self contained namespace
e T.ess chance of clashes

* More information (e.g. all keys)

UKUUG
25" November 2009

use strict 'subs'

e No barewords

e Bareword is a word with no other
interpretation

* e.g. word without $, @, %, &

* Treated as a function call or a quoted string
« $dalek = Karn;

* May clash with future reserved words

UKUUG
25" November 2009

use strict 'vars'

* Forces predeclaration of variable names

* Prevents typos
* Less like BASIC - more like Ada
* Thinking about scope is good

UKUUG
25" November 2009

use warnings

* Warns against dubious programming habits

* Some typical warnings

- Variables used only once
- Using undefined variables
- Writing to read-only file handles

- And many more...

UKUUG
25" November 2009

Open Source Consultaney, Development & Training

Allowing Warnings

e Sometimes it's too much work to make code
warnings clean

* Turn off use warnings locally

* Turn off specific warnings

- {
no warnings 'deprecated’';
dodgy code

}

* See perldoc perllexwarn

UKUUG
25" November 2009

Open Source Consultaney, Development & Training

Introducing References

* A reference is a bit like pointer in languages
like C and Pascal (but better)

* A reference is a unique way to refer to a
variable.

* A reference can always fit into a scalar
variable

e A reference looks like
SCALAR(0x20026730)

UKUUG
25" November 2009

Creating References

e Put\ in front of a variable name
- $scalar_ref = \$scalar;
- $array_ref = \@array;
- $hash_ref = \%hash;

* Can now treat it just like any other scalar
- $var = $scalar_ref;
- $refs[0] = $array_ref;
- $another_ref = $refs[0];

UKUUG
25" November 2009

Creating References

[LIST] creates anonymous array and
returns a reference

« $aref = ['this', 'is', 'a', 'list'],
$aref2 = [@array];

{ LIST } creates anonymous hash and
returns a reference

e $href
$href

UKUUG
25" November 2009

{ 1 => "one', 2 => 'two' },;
{ %hash };

Creating References

° @arr — (11 2, 3, 4);
$arefl = \@arr;
$aref2 = [@arr |,
print "$arefi\n$aref2\n";

* Output
ARRAY (0x20026800)
ARRAY (0x2002bc00)

* Second method creates a copy of the array

UKUUG
25" November 2009

Using Array References

* Use {$aref} to get back an array that you
have a reference to

* Whole array
- @array = @{$aref},
« @rev = reverse @{$aref};

* Single elements
« $elem = ${Saref}[0];
. ${$aref}[0] = 'foo"';

UKUUG
25" November 2009

Using Hash References

e Use {$href} to get back a hash that you
have a reference to

* Whole hash

« %hash = %{$href};

« @keys = keys %{$href};
* Single elements

» $elem = ${$href}{key};
e ${$href}{key} = 'foo';

UKUUG
25" November 2009

Using References

* Use arrow (->) to access elements of arrays
or hashes

 Instead of ${$aref}[0] you can use
$aref->[0]

 Instead of ${$href}{key} you can use
$href->{key}

UKUUG
25" November 2009

Using References

* You can find out what a reference is
referring to using ref

e $aref = [1, 2, 3];
print ref $aref; # prints ARRAY

e $href = { 1 => 'one',
2 => '"two' };
print ref $href; # prints HASH

UKUUG
25" November 2009

Why Use References?

* Parameter passing

* Complex data structures

UKUUG
25" November 2009

Parameter Passing

* What does this do?

e @arril (1, 2, 3);
@arr?2 (4, 5, 6);
check_size(@arrl, @arr2);

sub check_size {
my (@al, @a2) = @_;
print @al == @a2 ?
'Yes' : 'No';
h

UKUUG
25" November 2009

Why Doesn't It Work?

- my (@1, @a2) = @_;

* Arrays are combined in @_
e All elements end up in @a1l
* How do we fix it?

* Pass references to the arrays

UKUUG
25" November 2009

Another Attempt

e @arrl = (1, 2, 3);
@arr2 = (4, 5, 6);
check_size(\@arrl, \@arr2),;

sub check_size {
my ($al, $a2) = @_;
print @%$al == @%a2 ?
'Yes' : 'No';

¥

UKUUG
25" November 2009

Complex Data Structures

* Another good use for references

* Try to create a 2-D array

e @arr_2d = ((1, 2, 3),
(4I 5/ 6)/
(7, 8, 9));

* (@arr_2d contains
(1, 2, 3, 4, 5, 6, 7, 8, 9)

* This is known a array ﬂattenmg

UKUUG
25" November 2009

Complex Data Structures

* 2D Array using references
e @arr_2d = ([1, 2, 3],
4, 5, 6],
7, 8, 9]);

* But how do you access individual elements?
» $arr_2d[1] isref to array (4, 5, 6)

 $arr_2d[1]->[1] is element 5

UKUUG
25" November 2009

Complex Data Structures

* Another 2D Array

e« $arr_2d = [[1, 2, 3],
:41 5’ 6:/
7, 8, 911,

* $arr_2d->[1] isref to array (4, 5, 6)
 $arr_2d->[1]->[1] is element 5

e Can omit intermediate arrows
e $arr_2d->[1][1]

UKUUG
25" November 2009

More Data Structures

* Imagine the following data file

« Jones,Martha, UNIT
Harkness, Jack, Torchwood
Smith, Sarah Jane, Journalist

* What would be a good data structure?
* Hash for each record
. Array of records

0%7 of hashes

25t November 20

More Data Structures

* Building an array of hashes

e my @records;
my @cols =
('s_name', 'f_name', 'job');

while (<FILE>) {
chomp;
my %rec;
@rec{@cols} = split /,/;
push @records, \%rec;
UI;tUG

25" November 2009

Using an Array of Hashes

foreach (@records) {
print "$_->{f_name} ",
"$_->{s_name} ".
"1s a $_->{job}\n";

UKUUG
25" November 2009

Complex Data Structures

* Many more possibilities
- Hash of hashes

- Hash of lists
- Multiple levels (list of hash of hash, etc.)

* Lots of examples in “perldoc perldsc” (the
data structures cookbook)

UKUUG
25" November 2009

Sorting

e Per] has a sort function that takes a list and
SOrts 1t

e @sorted = sort @array;

* Note that it does not sort the list in place
e @array = sort @array;

UKUUG
25" November 2009

Sort Order

 The default sort order is ASCII

« @chars = sort 'e', 'b', 'a', 'd', '
@chars has ('a', 'b', 'c', 'd', '

* This can sometimes give strange results

« @chars = sort 'E', 'b', 'a', 'D', 'c';
@chars has ('D', 'E', 'a', 'b', 'c')

e @nums = sort 1 .. 10;
@nums has (1, 10, 2,
ft S5, 6, 7,

UKUUG
25" November 2009

3,
8,

en Source Consultancy, Development & Training

Sorting Blocks

* Can add a "sorting block" to customise sort
order

e @NUMS =
sort { $a <=> $b } 1 .. 10;

* Perl puts two of the values from the list into
$a and $b

* Block compares values and returns -1, 0 or 1

» <=> does this for numbers (cmp for strings)

UKUUG
25" November 2009

Sort Examples

* Other simple sort examples
e sort { $b cmp $a } @words
e sort { 1c $a cmp 1lc $b } @words

e sort { substr(%a, 4)
cmp substr($b, 4) } @lines

UKUUG
25" November 2009

Sorting Subroutines

* Can also use a subroutine name in place of a
code block

e @words = sort dictionary @words;

sub dictionary {
Don't change $a and $b
my ($A, $B) = ($a, $b);
$A =~ s/\W+//g;
$B =~ s/\W+//q;
$A cmp $B;

UKEUG

25" November 2009

Sorting Names

e my @names = ('Rose Tyler',
'Martha Jones',
'Donna Noble',
"Amy Pond');

@names = sort sort_names @names;

 Need to write sort names so that it sorts on
surname and then forename.

UKUUG
25" November 2009

Open Source Consultaney, Development & Training

Sorting Names (cont)

e sub sort_names {
my @a split /\s/, $a;
my @b split /\s/, $b;

return $af[1] cmp $b[1]
or $a[0] cmp $b[1];

UKUUG
25" November 2009

More Complex Sorts

e SUb sort_names {
my @a split /\s/, $a;
my @b split /\s/, $b;

return $a[l1] cmp $b[1]
or $a[0] cmp $b[0O];
}

* Can be inefficient on large amounts of data

* Multiple splits on the same data

UKUUG
25" November 2009

More Efficient Sorts

* Split each row only once

e @split = map { [split] } @names;

* Do the comparison

e @sort = sort { $a->[1] cmp $b->[1]
or $a->[0] cmp $b->[0] } @split;

* Join the data together

e @names = map { join " ', @%_ }
@sort;

UKUUG
25" November 2009

Put It All Together

* Can rewrite this as
e @names = map { join ' ', @%_ }
sort { $a->[1] cmp $b->[1]
|| $a->[0] cmp $b->[0] }
map { [split] } @names;

* All functions work on the output from the
previous function in the chain

UKUUG
25" November 2009

Schwartzian Transform

e @data_out =
map { $_->[1] }
sort { $a->[0] cmp $%a->[0] }
map { [func($_), $_] }
@data_1in;
* Old Lisp trick

e Named after Randal Schwartz

UKUUG
25" November 2009

Why Write Modules?

e Code reuse

* Prevent reinventing the wheel

* Easier to share across projects

* Better design, more generic

UKUUG
25" November 2009

Basic Module

e USe strict;
use warnings;

package MyModule;

use Exporter;
our @ISA = ('Exporter');
our @EXPORT = ('my_sub');

sub my_sub {
print "This 1s my_sub\n";

¥
UkubG

25" November 2009

Using MyModule.pm

e Use MyModule;

my_sub 1s now availlable
for use within your
program

my_sub();
Prints "This 1s my_sub()"

UKUUG
25" November 2009

Explaining MyModule.pm

* Much of MyModule.pm is concerned with
exporting subroutine names

e Subroutine full name
- MyModule: :my_sub()
* Exporting abbreviates that
- my_sub()

UKUUG
25" November 2009

Packages Revisited

* Every subroutine lives in a package
e The default package is main

* New packages are introduced with the
package keyword

e A subroutine's full name is package: :name

* Package name can be omitted from within
same package

* Like family names

UKUUG
25" November 2009

Using Exporter

* The module Exporter.pm handles the export
of subroutine (and variable) names

* bx

im

porter.pm defines a subroutine called
oort

e 1m

por t is automatically called whenever a

module is used

* import puts references to our subroutines
into our caller's symbol table

UKUUG

25" November 2009

How Exporter Works

 How does MyModule use Exporter's import
subroutine?

e We make use of inheritance
 Inheritance is defined using the @ISA array

e If we call a subroutine that doesn't exist in
our module, then the modules in @ISA are
also checked

 Therefore Exporter::import is called

UKUUG
25" November 2009

Exporting Symbols

* How does import know which subroutines to
export?

e Exports are defined in @EXPORT or
@EXPORT_OK

e Automatic exports are defined in @EXPORT
» Optional exports are defined in @EXPORT_OK

UKUUG
25" November 2009

Exporting Symbol Sets

* You can define sets of exports in
%BEXPORT_TAGS

* Key is set name

* Value is reference to an array of names

e our %EXPORT_TAGS =
(advanced => [qw(my_sub
my_other_sub)];

use MyModule qw(:advanced);
my_sub();
my_other_sub();

UKUUG
25" November 2009

Why Use
@EXPORT_OK?

* Give your users the choice of which
subroutines to import

* [.ess chances of name clashes

e Use @EXPORT_OK in preference to @EXPORT

* Document the exported names and sets

UKUUG
25" November 2009

Exporting Variables

* You can also export variables

e @EXPORT_OK = qw($scalar,
@array,
%hash);

* Can be part of export sets

* Any variables you export must be package
variables

UKUUG
25" November 2009

Writing Modules The
Easy Way

* A lot of module code is similar
* Don't write the boilerplate yourself
* Copy from an existing module

 Or look at Module::Starter

UKUUG
25" November 2009

OO Programming

* Traditional programming has subroutines
acting on methods

e OO inverts this

e Classes contain methods which define their
actions

* Objects are instances of classes
* Perl has an OO system bolted on
* Best of both worlds

UKUUG
25" November 2009

Object Oriented Perl

* An Object is just a module that obeys certain
extra rules

* Three rules of Perl objects

- A Class is a package
- An Object is a reference (usually to a hash)
- A Method is a subroutine
* bless tells a reference what kind of object it
1S

UKUUG
25" November 2009

A Simple Object

« package MyObject;

sub new {
my $class = shift;
my $name = shift;

my $self = { name => $name };

return bless $self, $class;

}

UKUUG
25" November 2009

A Simple Object (cont)

e sub get_name {
my $self = shift;
return $self->{name};

}

sub set_name {
my $self = shift;
$self->{name} = shift;

}

UROUG
25" November 2009

Using MyQObject.pm

e Use MyObject;
my $obj =
MyObject->new('Dave');

print $obj->get_name;
prints 'Dave'

$obj->set_name('David');
print $obj->get_name;
prints 'David’

UKUUG
25" November 2009

Moose

e FEasier OO Perl
* Moose is on CPAN
e Based on Perl 6 OO

* Well worth investigating

UKUUG
25" November 2009

Open Source Consultaney, Development & Training

Moose Example

« package MyModule;
use Moose;

has name => (1s => 'rw',

1sa => 'Str',
required => 1),

1;

UKUUG
25" November 2009

Further Information

* perldoc perlboot

* perldoc perltoot

* perldoc perlobj

* perldoc perlbot

* perldoc Moose (if it is installed)
* Object Oriented Perl (Conway)

UKUUG
25" November 2009

Testing

* Never program without a safety net

* Does your code do what it is supposed to
do?

* Will your code continue to do what it is
supposed to do?

 Write unit tests

e Run those tests all the time

UKUUG
25" November 2009

When to Run Tests

* As often as possible

* Before you add a feature

* After you have added a feature
* Before checking in code

* Before releasing code

* Constantly, automatically

UKUUG
25" November 2009

Testing In Perl

* Perl makes it easy to write test suites

* A lot of work in this area over the last eight
years

* Test::Simple and Test::More included in
Perl distribution

* Many more testing modules on CPAN

UKUUG
25" November 2009

Simple Test Program

e Use Test::More tests => 4;
BEGIN { use_ok('My::0Object'); }
ok(my $obj = My::0bject->new);
isa_ok($obj, 'My::0bject');
$obj->set_foo('Foo');

is($obj->get_foo, 'Foo');

UKUUG
25" November 2009

Simple Test Output

« $ prove -v test.t
test....
1..4
ok 1 - use My::0bject;
ok 2
ok 3 - The object 1sa My::0bject
ok 4
ok
All tests successful.
Files=1, Tests=4, 0 wallclock secs
(.02 usr 0.00 sys + 0.05 cusr 0.00
csys = 0.07 CPU)
Result: PASS

UKUUG
25" November 2009

Open Source Consultaney, Development & Training

Adding Test Names

e Use Test::More tests => 4;
BEGIN { use_ok('My::0bject'); }

ok(my $obj = My::0bject->new,
'Got an object');

isa_ok($obj, 'My::0bject');
$obj->set_foo('Foo');
is($obj->get_foo, 'Foo',

'"The foo is "Foo"\');
UKUUG

25" November 2009

Output With Names

« $ prove -v test2.t
test2....
1..4
ok 1 - use My::0bject;

ok 2 - got an object

ok 3 - The object 1isa My::0bject
ok 4 - The foo 1s "Foo"

ok

All tests successful.

Files=1, Tests=4, 0 wallclock secs

(.02 usr 0.00 sys + 0.05 cusr 0.00
csys = 0.07 CPU)

Result: PASS

UKUUG
25" November 2009

Open Source Consultaney, Development & Training

Using prove

* A command line tool for running tests
* Runs given tests using Test::Harness
* Comes with the Perl distribution

* Command line options

- -v verbose output
- -I recurse
- -s shuffle tests

- Many more

UKUUG
25" November 2009

Open Source Consultaney, Development & Training

Test Anything Protocol

* Perl tests have been spitting out “ok 1” and
not “ok 2” for years

e Now this ad-hoc format has a definition and
a name

* The Test Anything Protocol (TAP)

* See Test::Harness::TAP (documentation
module) and TAP::Parser

UKUUG
25" November 2009

TAP Output

* More possibilities for test output

- TAP::Harness::Color
- Test:: TAP::HTMLMatrix

* Make sense of your test results

UKUUG
25" November 2009

More Testing Modules

* Dozens of testing modules on CPAN

* Some of my favourites

* Test::File

* Test::Exception, Test::Warn

* Test::Differences

* Test:: XML (includes Test:: XML::XPath)

UKUUG
25" November 2009

More Information

* Perl Testing: A Developer's Notebook (Ian
Langworth & chromatic)

* perldoc Test::Tutorial TePSgﬂ{Il] g

A Developer's

* perldoc Test::Simple Notebort

Ian Langworth & chromatic

* perldoc Test::More

* etc...

O REILLY"

UKUUG
25" November 2009

Dates & Times

e Perl has built-in functions to handle dates
and times

* time — seconds since 1st Jan 1970
e Jocaltime — convert to human-readable

* timelocal (in Time::Local) — inverse of
localtime

» strftime (in POSIX) — formatting dates
and times

UKUUG
25" November 2009

Dates & Times on CPAN

* Look to CPAN for a better answer
* Dozens of date/time modules on CPAN
* Date::Manip is almost never what you want

* Date::Calc, Date::Parse, Class::Date,
Date::Simple, etc

* Which one do you choose?

UKUUG
25" November 2009

Perl DateTime Project

* http://datetime.perl.org/

* "The DateTime family of modules present a
unified way to handle dates and times in
Perl"

* "unified" is good

* Dozens of modules that work together in a
consistent fashion

UKUUG
25" November 2009

Using DateTime

e Uuse DateTime;

my $dt = DateTime->now;
say $dt;

2009-11-25T15:06:07
say $dt->dmy, "\n'";

2009-11-25

say $dt->hms, "\n";

15:06:07

UKUUG
25" November 2009

Using DateTime

e Use DateTime;

my $dt = DateTime->new(year => 20009,
month => 11,
day => 25);

say $dt->ymd('/"'), "\n";

2009/11/25

say $dt->month; # 11

say $dt->month_name; # November

UKUUG
25" November 2009

Open Source Consultaney, Development & Training

Arithmetic

* A DateTime object is a point in time
* For date arithmetic you need a duration

* Number of years, weeks, days, etc

UKUUG
25" November 2009

Arithmetic

e Use DateTime;
my $dt = DateTime->new(year => 2009,
month => 11,
day => 25);

my $two_weeks =

DateTime: :Duration->new(weeks => 2);
$dt += $two_weeks;

say $dt;

2009-12-08T00:00:00

UKUUG
25" November 2009

Formatting Output

e Use DateTime;
my $dt = DateTime->new(year => 2009,
month => 11,
day => 25);
say $dt->strftime('%A, %d %B %Y');
Wednesday, 25 November 2009

* Control input format with
DateTime::Format::Strptime

UKUUG
25" November 2009

Parsing & Formatting

* Ready made parsers and formatters for
popular date and time formats

* DateTime::Format::HIT'TP
* DateTime::Format::MySQL
* DateTime::Format::Excel

* DateTime::Format::Baby
- the big hand is on...

UKUUG
25" November 2009

Alternative Calendars

* Handling non-standard calendars
* DateTime::Calendar::Julian

e DateTime::Calendar::Hebrew

* DateTime::Calendar::Mayan
* DateTime::Fiction::JRRTolkien::Shire

UKUUG
25" November 2009

Calendar Examples

« use DateTime: :Calendar: :Mayan;
my $dt = DateTime: :Calendar::Mayanh->now;

say $dt->date; # 12.19.16.14.13

e use DateTime::Fiction::JRRTolkien: :Shire;

my $dt =
DateTime: :Fiction: :JRRTolkien: :Shire->now;

say $dt->on_date; # Trewsday 9 Blotmath 7473

UKUUG
25" November 2009

Open Source Consultaney, Development & Training

Tarr olzie

Templates

* Many people use templates to produce web
pages

* Advantages are well known

* Standard look and feel (static/dynamic)

* Reusable components

* Separation of code logic from display logic
* Different skill-sets (HTML vs Perl)

UKUUG
25" November 2009

Non-Web Templates

* The same advantages apply to non-web
areas

* Reports
e Business documents
* Configuration files

* Anywhere you produce output

UKUUG
25" November 2009

DIY Templating

* Must be easy - so many people do it
* See perlfaq4

* “How can I expand variables in text
strings?”

UKUUG
25" November 2009

DIY Templating

e $text =
'this has a $foo in it and a $bar';

%user_defs = (
foo => 23,
bar => 19,

)
$text =~ s/\$(\w+)/$user_defs{$1}/9g;
* Don't do that

UKUUG
25" November 2009

Templating Options
* Dozens of template modules on CPAN

* Text::Template, HIML::Template, Mason,
Template Toolkit

* Many, many more

* QQuestions to consider
- HTML only?

- Template language

* I recommend the Template Toolkit

UKUUG
25" November 2009

Template Toolkit

* http://tt2.org/

* Very powerful

* Both web and non-web

* Simple template language

* Plugins give access to much of CPAN

* Can use Perl code if you want
- But don't do that

UKUUG
25" November 2009

Good Book Too!

Perl Template
Toolkit

O'REILLY"

UKUUG
25" November 2009

Open Source Consultaney, Development & Training

The Template Equation

* Data + Template = Output

* Data + Alternative Template = Alternative
Output

e Different views of the same data

* Only the template changes

UKUUG
25" November 2009

Simple TT Example

e use Template;
use My::0bject;
my ($id, $format) = @ARGV;

$format ||= 'html';
my $obj = My::0bject->new($id)
or die;

my $tt = Template->new;
$tt->process("$format.tt",
{ obJ => %obj },
"$id.$format")
or die $tt->error;

UKUUG
25" November 2009

html. tt

e <html>
<head>
<title>[% obj.name %]</title>
</head>
<body>
<h1>[% obj.name %]<hi1>
<p>

(% obj.desc %]</p>

(% FOREACH child IN obj.children -%]
[% child.name %]</1l1>
(% END %]
</body>
</html>

UKUUG
25" November 2009

Open Source Consultaney, Development & Training

lext.it

+ [% obj.name | upper %]

Image: [% obj.img %]
[% obj.desc %]

[% FOREACH child IN obj.children -%]
* [% child.name %]
[% END %]

UKUUG
25" November 2009

Adding New Formats

* No new code required
* Just add new output template

* Perl programmer need not be involved

UKUUG
25" November 2009

Equation Revisited

* Data + Template = Output
- Template Toolkit

* Template + Output = Data
- Template::Extract

* Data + Output = Template

- Template::Generate

UKUUG
25" November 2009

Databases

* A large proportion of applications need to
talk to databases

* Perl has tools to make this as simple as
possible

e DBI is the basis for all modern Perl database
access

* You should be using DBI

- or something based on DBI

UKUUG
25" November 2009

How DBl Works

* Program uses DBI.pm

* Create a connection to a particular type of

database

* DBD module gets loaded
e DBD translates from DBI API to database

specific ca

Is

e DBD translates returned data into Perl data

stuctures

UKUUG
25" November 2009

Connecting to a DB

. use DBI;
my $dbh = DBI->connect(
"dbi:mysql:$some_stuff",
$user, $pass

);
* “mysql” is the name of the DBD
- DBD::mysql
* Easy to port a program to another database

* Just change the connection line

UKUUG
25" November 2009

Selecting Data

* Prepare the SQL statement

e my $sth = $dbh->prepare(
'select name, genre from artist'
);

e my $sth = $dbh->prepare(
"select title,
from song
where artist = '$id'");

* Check return values (syntax errors)

UKUUG
25" November 2009

Selecting Data (cont)

e Execute the statement
« $sth->execute

e Still need to check for errors

UKUUG
25" November 2009

Selecting Data (cont)

 Fetch the returned data

e while (my @row =
$sth->fetchrow_array){
print "@row\n";

}

* Fields are returned in the same order as they
are defined in the query

UKUUG
25" November 2009

Other Select Functions

 Other fetch methods are available:
- fetchrow_arrayref

- fetchrow_hashref (keys are column
names)

- fetchall_arrayref
- fetch (alias for fetchrow_arrayref)

* Many more added each week

UKUUG
25" November 2009

Some Caveats

* If you're using a fetch method that returns an
array

- Never use "select *"

- For (hopefully) obvious reasons

* If you're using a fetch method that returns a
hash

- Ensure all your columns have (unique) names

- For (hopefully) obvious reasons

UKUUG
25" November 2009

Insert, Update & Delete

e Statements that don't return data can be
executed the same way

e my $sgl = "update tablel
set coll = '"$val'
where id_col = $id";
my $sth = $dbh->prepare($sql);
$sth->execute;

 But there's a shortcut
e« $rows = $dbh->do($sql);

UKUUG
25" November 2009

Multiple Insertions

. while (<FILE>) {

chomp;
my @data = split;
my $sql = "insert into tab
values ($data[0],
$data[1],
$datal[2]");

$dbh->do($sql);
}

* Recompiles the SQL every time

* Very inefficient
UKUUG
25" November 2009

Binding Data

* Prepare statement once, use many times

e my $sgl = "insert into tab
values (?, 2?2, ?)";
my $sth = $dbh->prepare($sql);
while (<FILE>) {
my @data = split;
bind_param(1, $data[0O]
bind_param(2, $data[1]
bind_param(3, $data[2]
$sth->execute;

N 2O
— —

}
.Bonus - binding handles quotlng fo

25t November 2009

Binding Data (cont)

* Even easier — extra parameters to execute

e my $sql = "insert into tab
values (?, 2?2, ?)";
my $sth = $dbh->prepare($sql);

while (<FILE>) {
chomp;
my @data = split;
$sth->execute(@data);
h

UKUUG
25" November 2009

Unnamed Placeholders

* Having unnamed placeholders can get
confusing

e my $sgl = 'insert into big_table
values(

2.2, 2 2 2 2 92 92 92 92 92
I/ I/ !/ !/ !/ 4 !/ / /
2,2, 7, ?2, 2, 7?, 7?2, 2, 7?2, 7?2, 7

l’ l’ l’ l’ l’ l’ l’ l’ l’ n l’
2.2, 2 2 2 2 2 97 . ?2)';
I’ I’ I’ I’ I’ I’ I’ I’

* Good chance of getting the variables in the
wrong order

* By the way - there's a basic maintainability
varror in that SQL

25" November 2009

urce Consultancy, Development & Training

Bind By Name

« my $sql = 'insert into big_table
(1d, code, name, addr, email,
url, ...)
values (:1d, :code, :name,
raddr, :email, :url,

)
my $sth = $sqgl->prepare($sql);

$sth->bind_param(':id', $id);
$sth->bind_param(':code', $code);
etc

$sth->execute;

UKUUG
25" November 2009

Open Source Consultaney, Development & Training

Even Easier Binding

* Store your data in a hash
e my %data = (1d => 42,
code => 'H2G2',
),

and later...
foreach my $col (keys %data) {
$sth->bind_param(":$col",
$data{$col};

}

UKUUG
25" November 2009

Downsides

* Many DBDs don't support it
* Which is a bit of a bugger
* Oracle does

* So does PostgreSQL (tho' the docs
discourage its use)

* Check your DBD documentation

* Email your friendly neighbourhood DBD
author

UKUUG
25" November 2009

Some Tips

* Make your life as easy as possible

 Don't hard-code connection data

- Config file, command line options, environment
variables

* Send all of your data access through one
function

* Store SQL queries externally and reference
them by name

* Llse named bind parameters 1f you can

25" November 2009

Sample Code

« my $dbh;

sub run_sqgl {
my ($sql_statement, %args) = @_;
my $sql = get_sql($sgl_statement);
$dbh = get_dbh() unless $dbh;

my $sth = $dbh->prepare($sql);
foreach my $col (keys %args) {
$sth->bind_param(":$col",
$args{$col});
h

return $sth->execute;

}

UKUUG
25" November 2009

Open Source Consultaney, Development & Training

Not Writing SQL
* Writing SQL is boring
* It's often similar

— Select the id and name from this table

— Select all the details of this row

- Select something about related tables
- Update this row with these values
- Insert a new record with these values

— Delete this record

* .Must be a better way

25" November 2009

Open Source Consultaney, Development & Training

Object Relational
Mapping
* Mapping database relations into objects
* Tables (relations) map onto classes
* Rows (tuples) map onto objects

* Columns (attributes) map onto attributes
* Don't write SQL

UKUUG
25" November 2009

Replacing SQL

* Instead of

« SELECT *
FROM my_table
WHERE my_id = 10

* and then dealing with the
prepare/execute/fetch code

UKUUG
25" November 2009

Replacing SQL

* We can write
e Use My::0bject;

warning! not a real orm

my $obj = My::0bject->retrieve(10)
$obj->name('A New Name');
$obj->save;

* Or something similar

UKUUG
25" November 2009

ORM on CPAN

* Very many ORMs on CPAN
* Tangram

* Alzabo

* Class::DBI

* DBIx::Class

- The current favourite

- Highly recommended

UKUUG
25" November 2009

Further Information

* perldoc DBI

* perldoc DBD::*
- DBD::mysql
- DBD::Oracle
- Etc...

* perldoc DBIx::Class

UKUUG
25" November 2009

Trizie s Al Folias

* Any Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Creating References
	Slide 29
	Slide 30
	Using References
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Why Use References?
	Why Use Reference?
	Why Use References
	Complex Data Structures
	Slide 40
	Complex Data Structure
	More Complex Data Structures
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144

