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What We Will Cover

* Types of variable

* Strict and warnings
* References

* Sorting

* Reusable Code

* Object Orientation
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What We Will Cover

* Testing

* Dates and Times
* Templates

* Databases

 Further Information
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Schedule

* 09:45 — Begin

* 11:15 — Coffee break (15 mins)
* 13:00 — Lunch (60 mins)

* 14:00 — Begin

* 15:30 — Coffee break (15 mins)
* 17:00 — End
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Resources

* Slides available on-line

- http://mag-sol.com/train/public/2009-11/ukuug
* Also see Slideshare

- http://www.slideshare.net/davorg/slideshows
* Get Satisfaction

- http://getsatisfaction.com/magnum
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Types of Variable

* Perl variables are of two types

* Important to know the difference

e Lexical variables are created with my
* Package variables are created by our

e [.exical variables are associated with a code
block

* Package variables are associated with a
package
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| exical Variables

e Created with my

e my ($doctor, @timelords,
%home_planets);

* Live in a pad (associated with a block of
code)

- Piece of code delimited by braces

— Source file

UKUUG
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| exical Variables

* Only visible within enclosing block
. while (<$fh>) {

my $data = munge($_);
}

# can't see $data here

* "Lexical" because the scope is defined
purely by the text
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Packages

All Perl code is associated with a package

A new package is created with package

- package MyPackage;

Thin]

K of it as a namespace

Used

' to avoid name clashes with libraries

Default package is called main

UKUUG




Package Variables

* Live in a package's symbol table

* Can be referred to using a fully qualified
name

- $main: :doctor
- @Gallifrey::timelords
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Package Variables

* Package name not required within own
package

« package Gallifrey;
@timelords = ('Doctor', 'Master',
'Rani');

* Can be seen from anywhere in the package
(or anywhere at all when fully qualified)

UKUUG
25" November 2009




Declaring Package Vars

e Can be predeclared with our

« our ($doctor, @timelords,
%home_planet);

* Or (in older Perls) with use vars

e Use vars gw($doctor
@timelords
%home_planet);
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Lexical or Package

* When to use lexical variables or package
variables?

* Simple answer
- Always use lexical variables
* More complete answer

- Always use lexical variables

- Except for a tiny number of cases

* http://perl.plover.com/local.html
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local

* You might see code that uses local
« local $variable;

* This doesn't do what you think it does

* Badly named function

* Doesn't create local variables

* Creates a local copy of a package variable

e Can be useful

- In a small number of cases
UKUUG
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local Example

* $/ is a package variable

* It defines the input record separator
* You might want to change it

* Always localise changes
° {
local $/ = “\n\n”";
while (<FILE> ) {

¥
UI}JUG
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Coding Safety Net

* Perl can be a very loose programming
language

* Two features can minimise the dangers
* use strict/use warnings
* A good habit to get into

* No serious Perl programmer codes without
them
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use strict

* Controls three things

* use strict 'refs' —no symbolic
references

e use strict 'subs' —no barewords

* use strict 'vars' -no undeclared
variables

* Use strict — turn on all three at once

e turn them off (carefully) with no strict
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use strict 'refs'

* Prevents symbolic references

* Using a variable as another variable's name

« $what = 'dalek';
$$what = 'Karn';
# sets $dalek to 'Karn'

* What if 'dalek' came from user input?
* People often think this is a cool feature
* [tisn't
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use strict ‘refs' (cont)

 Better to use a hash

« $Swhat = 'dalek';
$alien{$what} = 'Karn';

* Self contained namespace
e T.ess chance of clashes

* More information (e.g. all keys)
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use strict 'subs'

e No barewords

e Bareword is a word with no other
interpretation

* e.g. word without $, @, %, &

* Treated as a function call or a quoted string
« $dalek = Karn;

* May clash with future reserved words
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use strict 'vars'

* Forces predeclaration of variable names

* Prevents typos
* Less like BASIC - more like Ada
* Thinking about scope is good
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use warnings

* Warns against dubious programming habits

* Some typical warnings

- Variables used only once
- Using undefined variables
- Writing to read-only file handles

- And many more...
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Allowing Warnings

e Sometimes it's too much work to make code
warnings clean

* Turn off use warnings locally

* Turn off specific warnings

- {
no warnings 'deprecated’';
# dodgy code

}

* See perldoc perllexwarn
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Introducing References

* A reference is a bit like pointer in languages
like C and Pascal (but better)

* A reference is a unique way to refer to a
variable.

* A reference can always fit into a scalar
variable

e A reference looks like
SCALAR(0x20026730)
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Creating References

e Put\ in front of a variable name
- $scalar_ref = \$scalar;
- $array_ref = \@array;
- $hash_ref = \%hash;

* Can now treat it just like any other scalar
- $var = $scalar_ref;
- $refs[0] = $array_ref;
- $another_ref = $refs[0];
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Creating References

[ LIST ] creates anonymous array and
returns a reference

« $aref = [ 'this', 'is', 'a', 'list'],
$aref2 = [ @array ];

{ LIST } creates anonymous hash and
returns a reference

e $href
$href

UKUUG
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Creating References

° @arr — (11 2, 3, 4);
$arefl = \@arr;
$aref2 = [ @arr |,
print "$arefi\n$aref2\n";

* Output
ARRAY (0x20026800)
ARRAY (0x2002bc00)

* Second method creates a copy of the array
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Using Array References

* Use {$aref} to get back an array that you
have a reference to

* Whole array
- @array = @{$aref},
« @rev = reverse @{$aref};

* Single elements
« $elem = ${Saref}[0];
. ${$aref}[0] = 'foo"';
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Using Hash References

e Use {$href} to get back a hash that you
have a reference to

* Whole hash

« %hash = %{$href};

« @keys = keys %{$href};
* Single elements

» $elem = ${$href}{key};
e ${$href}{key} = 'foo';
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Using References

* Use arrow (->) to access elements of arrays
or hashes

 Instead of ${$aref}[0] you can use
$aref->[0]

 Instead of ${$href}{key} you can use
$href->{key}
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Using References

* You can find out what a reference is
referring to using ref

e $aref = [ 1, 2, 3 ];
print ref $aref; # prints ARRAY

e $href = { 1 => 'one',
2 => '"two' };
print ref $href; # prints HASH
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Why Use References?

* Parameter passing

* Complex data structures
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Parameter Passing

* What does this do?

e @arril (1, 2, 3);
@arr?2 (4, 5, 6);
check_size(@arrl, @arr2);

sub check_size {
my (@al, @a2) = @_;
print @al == @a2 ?
'Yes' : 'No';
h
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Why Doesn't It Work?

- my (@1, @a2) = @_;

* Arrays are combined in @_
e All elements end up in @a1l
* How do we fix it?

* Pass references to the arrays

UKUUG
25" November 2009




Another Attempt

e @arrl = (1, 2, 3);
@arr2 = (4, 5, 6);
check_size(\@arrl, \@arr2),;

sub check_size {
my ($al, $a2) = @_;
print @%$al == @%a2 ?
'Yes' : 'No';

¥
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Complex Data Structures

* Another good use for references

* Try to create a 2-D array

e @arr_2d = ((1, 2, 3),
(4I 5/ 6)/
(7, 8, 9));

* (@arr_2d contains
(1, 2, 3, 4, 5, 6, 7, 8, 9)

* This is known a array ﬂattenmg
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Complex Data Structures

* 2D Array using references
e @arr_2d = ([1, 2, 3],
4, 5, 6],
7, 8, 9]);

* But how do you access individual elements?
» $arr_2d[1] isref to array (4, 5, 6)

 $arr_2d[1]->[1] is element 5
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Complex Data Structures

* Another 2D Array

e« $arr_2d = [[1, 2, 3],
:41 5’ 6:/
7, 8, 911,

* $arr_2d->[1] isref to array (4, 5, 6)
 $arr_2d->[1]->[1] is element 5

e Can omit intermediate arrows
e $arr_2d->[1][1]
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More Data Structures

* Imagine the following data file

« Jones,Martha, UNIT
Harkness, Jack, Torchwood
Smith, Sarah Jane, Journalist

* What would be a good data structure?
* Hash for each record
. Array of records

0%7 of hashes
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More Data Structures

* Building an array of hashes

e my @records;
my @cols =
('s_name', 'f_name', 'job');

while (<FILE>) {
chomp;
my %rec;
@rec{@cols} = split /,/;
push @records, \%rec;
UI;tUG
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Using an Array of Hashes

foreach (@records) {
print "$_->{f_name} ",
"$_->{s_name} ".
"1s a $_->{job}\n";
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Complex Data Structures

* Many more possibilities
- Hash of hashes

- Hash of lists
- Multiple levels (list of hash of hash, etc.)

* Lots of examples in “perldoc perldsc” (the
data structures cookbook)
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Sorting

e Per] has a sort function that takes a list and
SOrts 1t

e @sorted = sort @array;

* Note that it does not sort the list in place
e @array = sort @array;
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Sort Order

 The default sort order is ASCII

« @chars = sort 'e', 'b', 'a', 'd', '
# @chars has ('a', 'b', 'c', 'd', '

* This can sometimes give strange results

« @chars = sort 'E', 'b', 'a', 'D', 'c';
# @chars has ('D', 'E', 'a', 'b', 'c')

e @nums = sort 1 .. 10;
# @nums has (1, 10, 2,
ft S5, 6, 7,

UKUUG
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Sorting Blocks

* Can add a "sorting block" to customise sort
order

e @NUMS =
sort { $a <=> $b } 1 .. 10;

* Perl puts two of the values from the list into
$a and $b

* Block compares values and returns -1, 0 or 1

» <=> does this for numbers (cmp for strings)
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Sort Examples

* Other simple sort examples
e sort { $b cmp $a } @words
e sort { 1c $a cmp 1lc $b } @words

e sort { substr(%a, 4)
cmp substr($b, 4) } @lines
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Sorting Subroutines

* Can also use a subroutine name in place of a
code block

e @words = sort dictionary @words;

sub dictionary {
# Don't change $a and $b
my ($A, $B) = ($a, $b);
$A =~ s/\W+//g;
$B =~ s/\W+//q;
$A cmp $B;

UKEUG
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Sorting Names

e my @names = ('Rose Tyler',
'Martha Jones',
'Donna Noble',
"Amy Pond');

@names = sort sort_names @names;

 Need to write sort names so that it sorts on
surname and then forename.

UKUUG
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Sorting Names (cont)

e sub sort_names {
my @a split /\s/, $a;
my @b split /\s/, $b;

return $af[1] cmp $b[1]
or $a[0] cmp $b[1];
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More Complex Sorts

e SUb sort_names {
my @a split /\s/, $a;
my @b split /\s/, $b;

return $a[l1] cmp $b[1]
or $a[0] cmp $b[0O];
}

* Can be inefficient on large amounts of data

* Multiple splits on the same data
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More Efficient Sorts

* Split each row only once

e @split = map { [ split ] } @names;

* Do the comparison

e @sort = sort { $a->[1] cmp $b->[1]
or $a->[0] cmp $b->[0] } @split;

* Join the data together

e @names = map { join " ', @%_ }
@sort;
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Put It All Together

* Can rewrite this as
e @names = map { join ' ', @%_ }
sort { $a->[1] cmp $b->[1]
|| $a->[0] cmp $b->[0] }
map { [ split ] } @names;

* All functions work on the output from the
previous function in the chain

UKUUG
25" November 2009




Schwartzian Transform

e @data_out =
map { $_->[1] }
sort { $a->[0] cmp $%a->[0] }
map { [func($_), $_] }
@data_1in;
* Old Lisp trick

e Named after Randal Schwartz
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Why Write Modules?

e Code reuse

* Prevent reinventing the wheel

* Easier to share across projects

* Better design, more generic
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Basic Module

e USe strict;
use warnings;

package MyModule;

use Exporter;
our @ISA = ('Exporter');
our @EXPORT = ('my_sub');

sub my_sub {
print "This 1s my_sub\n";

¥
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Using MyModule.pm

e Use MyModule;

# my_sub 1s now availlable
# for use within your
# program

my_sub();
# Prints "This 1s my_sub()"
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Explaining MyModule.pm

* Much of MyModule.pm is concerned with
exporting subroutine names

e Subroutine full name
- MyModule: :my_sub()
* Exporting abbreviates that
- my_sub()
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Packages Revisited

* Every subroutine lives in a package
e The default package is main

* New packages are introduced with the
package keyword

e A subroutine's full name is package: :name

* Package name can be omitted from within
same package

* Like family names
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Using Exporter

* The module Exporter.pm handles the export
of subroutine (and variable) names

* bx

im

porter.pm defines a subroutine called
oort

e 1m

por t is automatically called whenever a

module is used

* import puts references to our subroutines
into our caller's symbol table

UKUUG
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How Exporter Works

 How does MyModule use Exporter's import
subroutine?

e We make use of inheritance
 Inheritance is defined using the @ISA array

e If we call a subroutine that doesn't exist in
our module, then the modules in @ISA are
also checked

 Therefore Exporter::import is called
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Exporting Symbols

* How does import know which subroutines to
export?

e Exports are defined in @EXPORT or
@EXPORT_OK

e Automatic exports are defined in @EXPORT
» Optional exports are defined in @EXPORT_OK
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Exporting Symbol Sets

* You can define sets of exports in
%BEXPORT_TAGS

* Key is set name

* Value is reference to an array of names

e our %EXPORT_TAGS =
(advanced => [ qw( my_sub
my_other_sub ) ];

use MyModule qw(:advanced);
my_sub();
my_other_sub();
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Why Use
@EXPORT_OK?

* Give your users the choice of which
subroutines to import

* [.ess chances of name clashes

e Use @EXPORT_OK in preference to @EXPORT

* Document the exported names and sets
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Exporting Variables

* You can also export variables

e @EXPORT_OK = qw($scalar,
@array,
%hash);

* Can be part of export sets

* Any variables you export must be package
variables
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Writing Modules The
Easy Way

* A lot of module code is similar
* Don't write the boilerplate yourself
* Copy from an existing module

 Or look at Module::Starter
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OO Programming

* Traditional programming has subroutines
acting on methods

e OO inverts this

e Classes contain methods which define their
actions

* Objects are instances of classes
* Perl has an OO system bolted on
* Best of both worlds
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Object Oriented Perl

* An Object is just a module that obeys certain
extra rules

* Three rules of Perl objects

- A Class is a package
- An Object is a reference (usually to a hash)
- A Method is a subroutine
* bless tells a reference what kind of object it
1S
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A Simple Object

« package MyObject;

sub new {
my $class = shift;
my $name = shift;

my $self = { name => $name };

return bless $self, $class;

}
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A Simple Object (cont)

e sub get_name {
my $self = shift;
return $self->{name};

}

sub set_name {
my $self = shift;
$self->{name} = shift;

}
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Using MyQObject.pm

e Use MyObject;
my $obj =
MyObject->new( 'Dave');

print $obj->get_name;
# prints 'Dave'

$obj->set_name( 'David');
print $obj->get_name;
# prints 'David’
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Moose

e FEasier OO Perl
* Moose is on CPAN
e Based on Perl 6 OO

* Well worth investigating
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Moose Example

« package MyModule;
use Moose;

has name => (1s => 'rw',

1sa => 'Str',
required => 1),

1;
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Further Information

* perldoc perlboot

* perldoc perltoot

* perldoc perlobj

* perldoc perlbot

* perldoc Moose (if it is installed)
* Object Oriented Perl (Conway)
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Testing

* Never program without a safety net

* Does your code do what it is supposed to
do?

* Will your code continue to do what it is
supposed to do?

 Write unit tests

e Run those tests all the time
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When to Run Tests

* As often as possible

* Before you add a feature

* After you have added a feature
* Before checking in code

* Before releasing code

* Constantly, automatically
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Testing In Perl

* Perl makes it easy to write test suites

* A lot of work in this area over the last eight
years

* Test::Simple and Test::More included in
Perl distribution

* Many more testing modules on CPAN
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Simple Test Program

e Use Test::More tests => 4;
BEGIN { use_ok('My::0Object'); }
ok(my $obj = My::0bject->new);
isa_ok($obj, 'My::0bject');
$obj->set_foo('Foo');

is($obj->get_foo, 'Foo');
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Simple Test Output

« $ prove -v test.t
test....
1..4
ok 1 - use My::0bject;
ok 2
ok 3 - The object 1sa My::0bject
ok 4
ok
All tests successful.
Files=1, Tests=4, 0 wallclock secs
( .02 usr 0.00 sys + 0.05 cusr 0.00
csys = 0.07 CPU)
Result: PASS
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Adding Test Names

e Use Test::More tests => 4;
BEGIN { use_ok('My::0bject'); }

ok(my $obj = My::0bject->new,
'Got an object');

isa_ok($obj, 'My::0bject');
$obj->set_foo('Foo');
is($obj->get_foo, 'Foo',

'"The foo is "Foo"\');
UKUUG
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Output With Names

« $ prove -v test2.t
test2....
1..4
ok 1 - use My::0bject;

ok 2 - got an object

ok 3 - The object 1isa My::0bject
ok 4 - The foo 1s "Foo"

ok

All tests successful.

Files=1, Tests=4, 0 wallclock secs

( .02 usr 0.00 sys + 0.05 cusr 0.00
csys = 0.07 CPU)

Result: PASS
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Using prove

* A command line tool for running tests
* Runs given tests using Test::Harness
* Comes with the Perl distribution

* Command line options

- -v verbose output
- -I recurse
- -s shuffle tests

- Many more
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Test Anything Protocol

* Perl tests have been spitting out “ok 1” and
not “ok 2” for years

e Now this ad-hoc format has a definition and
a name

* The Test Anything Protocol (TAP)

* See Test::Harness::TAP (documentation
module) and TAP::Parser
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TAP Output

* More possibilities for test output

- TAP::Harness::Color
- Test:: TAP::HTMLMatrix

* Make sense of your test results
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More Testing Modules

* Dozens of testing modules on CPAN

* Some of my favourites

* Test::File

* Test::Exception, Test::Warn

* Test::Differences

* Test:: XML (includes Test:: XML::XPath)
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More Information

* Perl Testing: A Developer's Notebook (Ian
Langworth & chromatic)

* perldoc Test::Tutorial TePSgﬂ{Il] g

A Developer's

* perldoc Test::Simple Notebort

Ian Langworth & chromatic

* perldoc Test::More

* etc...

O REILLY"
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Dates & Times

e Perl has built-in functions to handle dates
and times

* time — seconds since 1st Jan 1970
e Jocaltime — convert to human-readable

* timelocal (in Time::Local) — inverse of
localtime

» strftime (in POSIX) — formatting dates
and times
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Dates & Times on CPAN

* Look to CPAN for a better answer
* Dozens of date/time modules on CPAN
* Date::Manip is almost never what you want

* Date::Calc, Date::Parse, Class::Date,
Date::Simple, etc

* Which one do you choose?
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Perl DateTime Project

* http://datetime.perl.org/

* "The DateTime family of modules present a
unified way to handle dates and times in
Perl"

* "unified" is good

* Dozens of modules that work together in a
consistent fashion
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Using DateTime

e Uuse DateTime;

my $dt = DateTime->now;
say $dt;

# 2009-11-25T15:06:07
say $dt->dmy, "\n'";

# 2009-11-25

say $dt->hms, "\n";

# 15:06:07
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Using DateTime

e Use DateTime;

my $dt = DateTime->new(year => 20009,
month => 11,
day => 25);

say $dt->ymd('/"'), "\n";

# 2009/11/25

say $dt->month; # 11

say $dt->month_name; # November

UKUUG
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Arithmetic

* A DateTime object is a point in time
* For date arithmetic you need a duration

* Number of years, weeks, days, etc
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Arithmetic

e Use DateTime;
my $dt = DateTime->new(year => 2009,
month => 11,
day => 25);

my $two_weeks =

DateTime: :Duration->new(weeks => 2);
$dt += $two_weeks;

say $dt;

# 2009-12-08T00:00:00
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Formatting Output

e Use DateTime;
my $dt = DateTime->new(year => 2009,
month => 11,
day => 25);
say $dt->strftime('%A, %d %B %Y');
# Wednesday, 25 November 2009

* Control input format with
DateTime::Format::Strptime
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Parsing & Formatting

* Ready made parsers and formatters for
popular date and time formats

* DateTime::Format::HIT'TP
* DateTime::Format::MySQL
* DateTime::Format::Excel

* DateTime::Format::Baby
- the big hand is on...
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Alternative Calendars

* Handling non-standard calendars
* DateTime::Calendar::Julian

e DateTime::Calendar::Hebrew

* DateTime::Calendar::Mayan
* DateTime::Fiction::JRRTolkien::Shire
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Calendar Examples

« use DateTime: :Calendar: :Mayan;
my $dt = DateTime: :Calendar::Mayanh->now;

say $dt->date; # 12.19.16.14.13

e use DateTime::Fiction::JRRTolkien: :Shire;

my $dt =
DateTime: :Fiction: :JRRTolkien: :Shire->now;

say $dt->on_date; # Trewsday 9 Blotmath 7473
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Templates

* Many people use templates to produce web
pages

* Advantages are well known

* Standard look and feel (static/dynamic)

* Reusable components

* Separation of code logic from display logic
* Different skill-sets (HTML vs Perl)

UKUUG
25" November 2009




Non-Web Templates

* The same advantages apply to non-web
areas

* Reports
e Business documents
* Configuration files

* Anywhere you produce output
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DIY Templating

* Must be easy - so many people do it
* See perlfaq4

* “How can I expand variables in text
strings?”
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DIY Templating

e $text =
'this has a $foo in it and a $bar';

%user_defs = (
foo => 23,
bar => 19,

)
$text =~ s/\$(\w+)/$user_defs{$1}/9g;
* Don't do that
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Templating Options
* Dozens of template modules on CPAN

* Text::Template, HIML::Template, Mason,
Template Toolkit

* Many, many more

* QQuestions to consider
- HTML only?

- Template language

* I recommend the Template Toolkit

UKUUG
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Template Toolkit

* http://tt2.org/

* Very powerful

* Both web and non-web

* Simple template language

* Plugins give access to much of CPAN

* Can use Perl code if you want
- But don't do that
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Good Book Too!

Perl Template
Toolkit

O'REILLY"
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The Template Equation

* Data + Template = Output

* Data + Alternative Template = Alternative
Output

e Different views of the same data

* Only the template changes

UKUUG
25" November 2009




Simple TT Example

e use Template;
use My::0bject;
my ($id, $format) = @ARGV;

$format ||= 'html';
my $obj = My::0bject->new($id)
or die;

my $tt = Template->new;
$tt->process("$format.tt",
{ obJ => %obj },
"$id.$format")
or die $tt->error;
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html. tt

e <html>
<head>
<title>[% obj.name %]</title>
</head>
<body>
<h1>[% obj.name %]<hi1>
<p><img src=“[% obj.img %]” /><br />
(% obj.desc %]</p>
<ul>
(% FOREACH child IN obj.children -%]
<li>[% child.name %]</1l1>
(% END %]
</body>
</html>
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lext.it

+ [% obj.name | upper %]

Image: [% obj.img %]
[% obj.desc %]

[% FOREACH child IN obj.children -%]
* [% child.name %]
[% END %]
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Adding New Formats

* No new code required
* Just add new output template

* Perl programmer need not be involved
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Equation Revisited

* Data + Template = Output
- Template Toolkit

* Template + Output = Data
- Template::Extract

* Data + Output = Template

- Template::Generate

UKUUG
25" November 2009







Databases

* A large proportion of applications need to
talk to databases

* Perl has tools to make this as simple as
possible

e DBI is the basis for all modern Perl database
access

* You should be using DBI

- or something based on DBI
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How DBl Works

* Program uses DBI.pm

* Create a connection to a particular type of

database

* DBD module gets loaded
e DBD translates from DBI API to database

specific ca

Is

e DBD translates returned data into Perl data

stuctures
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Connecting to a DB

. use DBI;
my $dbh = DBI->connect(
"dbi:mysql:$some_stuff",
$user, $pass

);
* “mysql” is the name of the DBD
- DBD::mysql
* Easy to port a program to another database

* Just change the connection line
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Selecting Data

* Prepare the SQL statement

e my $sth = $dbh->prepare(
'select name, genre from artist'
);

e my $sth = $dbh->prepare(
"select title,
from song
where artist = '$id'");

* Check return values (syntax errors)
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Selecting Data (cont)

e Execute the statement
« $sth->execute

e Still need to check for errors
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Selecting Data (cont)

 Fetch the returned data

e while (my @row =
$sth->fetchrow_array){
print "@row\n";

}

* Fields are returned in the same order as they
are defined in the query
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Other Select Functions

 Other fetch methods are available:
- fetchrow_arrayref

- fetchrow_hashref (keys are column
names)

- fetchall_arrayref
- fetch (alias for fetchrow_arrayref)

* Many more added each week
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Some Caveats

* If you're using a fetch method that returns an
array

- Never use "select *"

- For (hopefully) obvious reasons

* If you're using a fetch method that returns a
hash

- Ensure all your columns have (unique) names

- For (hopefully) obvious reasons
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Insert, Update & Delete

e Statements that don't return data can be
executed the same way

e my $sgl = "update tablel
set coll = '"$val'
where id_col = $id";
my $sth = $dbh->prepare($sql);
$sth->execute;

 But there's a shortcut
e« $rows = $dbh->do($sql);
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Multiple Insertions

. while (<FILE>) {

chomp;
my @data = split;
my $sql = "insert into tab
values ($data[0],
$data[1],
$datal[2]");

$dbh->do($sql);
}

* Recompiles the SQL every time

* Very inefficient
UKUUG
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Binding Data

* Prepare statement once, use many times

e my $sgl = "insert into tab
values (?, 2?2, ?)";
my $sth = $dbh->prepare($sql);
while (<FILE>) {
my @data = split;
bind_param(1, $data[0O]
bind_param(2, $data[1]
bind_param(3, $data[2]
$sth->execute;

N 2O
— —

}
.Bonus - binding handles quotlng fo
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Binding Data (cont)

* Even easier — extra parameters to execute

e my $sql = "insert into tab
values (?, 2?2, ?)";
my $sth = $dbh->prepare($sql);

while (<FILE>) {
chomp;
my @data = split;
$sth->execute(@data);
h
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Unnamed Placeholders

* Having unnamed placeholders can get
confusing

e my $sgl = 'insert into big_table
values(

2.2, 2 2 2 2 92 92 92 92 92
I/ I/ !/ !/ !/ 4 !/ / /
2,2, 7, ?2, 2, 7?, 7?2, 2, 7?2, 7?2, 7

l’ l’ l’ l’ l’ l’ l’ l’ l’ n l’
2.2, 2 2 2 2 2 97 . ?2)';
I’ I’ I’ I’ I’ I’ I’ I’

* Good chance of getting the variables in the
wrong order

* By the way - there's a basic maintainability
varror in that SQL
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Bind By Name

« my $sql = 'insert into big_table
(1d, code, name, addr, email,
url, ... )
values (:1d, :code, :name,
raddr, :email, :url,

)
my $sth = $sqgl->prepare($sql);

$sth->bind_param(':id', $id);
$sth->bind_param(':code', $code);
# etc

$sth->execute;
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Even Easier Binding

* Store your data in a hash
e my %data = (1d => 42,
code => 'H2G2',
),

# and later...
foreach my $col (keys %data) {
$sth->bind_param(":$col",
$data{$col};

}
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Downsides

* Many DBDs don't support it
* Which is a bit of a bugger
* Oracle does

* So does PostgreSQL (tho' the docs
discourage its use)

* Check your DBD documentation

* Email your friendly neighbourhood DBD
author
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Some Tips

* Make your life as easy as possible

 Don't hard-code connection data

- Config file, command line options, environment
variables

* Send all of your data access through one
function

* Store SQL queries externally and reference
them by name

* Llse named bind parameters 1f you can
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Sample Code

« my $dbh;

sub run_sqgl {
my ($sql_statement, %args) = @_;
my $sql = get_sql($sgl_statement);
$dbh = get_dbh() unless $dbh;

my $sth = $dbh->prepare($sql);
foreach my $col (keys %args) {
$sth->bind_param(":$col",
$args{$col});
h

return $sth->execute;

}
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Not Writing SQL
* Writing SQL is boring
* It's often similar

— Select the id and name from this table

— Select all the details of this row

- Select something about related tables
- Update this row with these values
- Insert a new record with these values

— Delete this record

* .Must be a better way
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Object Relational
Mapping
* Mapping database relations into objects
* Tables (relations) map onto classes
* Rows (tuples) map onto objects

* Columns (attributes) map onto attributes
* Don't write SQL
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Replacing SQL

* Instead of

« SELECT *
FROM my_table
WHERE my_id = 10

* and then dealing with the
prepare/execute/fetch code
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Replacing SQL

* We can write
e Use My::0bject;

# warning! not a real orm

my $obj = My::0bject->retrieve(10)
$obj->name('A New Name');
$obj->save;

* Or something similar
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ORM on CPAN

* Very many ORMs on CPAN
* Tangram

* Alzabo

* Class::DBI

* DBIx::Class

- The current favourite

- Highly recommended
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Further Information

* perldoc DBI

* perldoc DBD::*
- DBD::mysql
- DBD::Oracle
- Etc...

* perldoc DBIx::Class
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Trizie s Al Folias

* Any Questions?
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